
MITOCW | watch?v=VEV74hwASeU

The following content is provided under a Creative Commons license. Your support

will help MIT OpenCourseWare continue to offer high quality educational resources

for free. To make a donation or to view additional materials from hundreds of MIT

courses, visit MIT OpenCourseWare at ocw.mit.edu.

PROFESSOR: All right, let's get started. So today we're going to talk about the system called

Native Client, which is actually a real world system used by Google. One example,

they actually use it in the Chrome browser to allow web applications to run arbitrary

native code. It's actually a pretty cool system, and it's also an illustration.

Another isolation or sort of sandboxing or privilege separation technique, that's

called software fault isolation, doesn't rely on operating systems to sandbox a

process or virtual machines. But instead, it has a very different approach to looking

at the particular instructions in a binary, to figure out whether it's going to be safe to

run or not.

So before we I guess start looking at the technical details of the system, let's figure

out, why do these guys actually want to run native code? So the particular context

they are interested in applying their solution to is a web browser, where you can

already run JavaScript code and maybe Flash, and maybe a couple of other things.

Why are these guys so excited about running raw x86? It seems like a step

backwards.

AUDIENCE: Really fast computation.

PROFESSOR: Yeah, that's one huge advantage of native code. Even though it might be unsafe

from some perspectives, it's really high performance. And whatever you can do in

JavaScript, presumably you could just write the same thing and assemble it, and it'll

go at least as fast-- probably much faster. Any other reasons? Yeah?

AUDIENCE: Run existing code?

PROFESSOR: Yeah. So another big thing is maybe not everything is written in JavaScript. So if you

1



have an existing application-- I guess 'legacy' in industry terminology-- if you have

some existing code that you really want to run in the web, then this seems like a

great solution. Because you could just take an existing library, like some

complicated graphics processing engine that's both performance sensitive and lots

of complicated stuff you don't want to re-implement, then this seems like a good

solution. Anything else-- if you're just like programming a new web app, should you

use Native Client if you don't care about legacy or performance so much? Any other

reasons? I guess another-- yeah?

AUDIENCE: You don't have to use JavaScript.

PROFESSOR: Yeah, that's an awesome reason, right? If you don't like JavaScript, then you don't

have to use it, right? You can actually use, well, C, if you are so inclined. You could

run Python code, you could write Haskell, whatever you think is useful. You could

actually support other languages all of a sudden.

So this is a reasonably compelling list of-- motivation for them to run native code in

the browser, and it turns out to be reasonably tricky to get right. And we'll look at the

technical details, I guess, of how it works in a second. But just to show you guys

what this paper is talking about, I just want to show a very simple tutorial demo

almost that I got out of their Native Client website.

It's fairly simple as it turns out to just take a C++ or a C program and run in the

browser. So just to show you what this looks like, here's basically a demo I mostly

sort of took from one of their examples. So you can look at a web page like this

index HTML file. And inside of it, you have a bunch of JavaScript code.

And the reason this JavaScript code exists is to sort of interact with the Native Client

piece. So the way you can sort of think of this running in the browser is that you

have the browser-- well, we'll talk much more about web security later, but roughly

you have some sort of a page, web page that contains some JavaScript code. And

this runs with the pages privileges. And this can do various things to the web page

itself, maybe talk to the network in some circumstances.

2



But what Native Client allows you to do is to have this Native Client module running

sort of to the side in the browser as well. And the JavaScript code can actually

interact with the Native Client module and get responses back.

And what you see here in this web page is the little bit of JavaScript code that's

necessary in Native Client to interract with the particular NaCl module that we're

going to be running. And you can send messages to this module. The way you do it

is you take this module object in JavaScript, and you call it postMessage. And you

could actually supply a message to send to the Native Client module. And when the

Native Client module responds, it'll run this handle message function in JavaScript.

And in this particular case, it just pops up and alerts dialog box in my browser.

So it's a fairly simple interface from the web page side, from the JavaScript side.

And the only thing you additional you have to do, is you actually have to declare this

Native Client module this way. So you just say embed module with a particular ID.

And the sort of most interesting part is this source equals Hello. some NMF barch

attribute. And this one just says, well here's the roughly executable file that you

need to load and start running in the native side of things.

And this native code actually looks like any other C++ code you might write roughly.

So here's the program. The interesting part is roughly this handle message function.

So this is a C++ class, and whenever the JavaScript code sends some message to

the native code, it'll actually run this function. And it'll check if the message that's

being sent is hello. And if so, construct a reply string of some sort and send it back.

It's fairly simple stuff. But just to be concrete, let's try to run it and see what

happens.

So we can actually build it, and run a little web server that is going serve up this

page and Native Client module. So here I can go to this URL and here we go. Right,

it's actually loaded in the module. The module seems to have gotten our hello

message from JavaScript. It replied back with the string back to JavaScript. And the

JavaScript code popped up a dialog box containing that response. So it actually

does kind of work.

3



We can try to see if we could crash Native Client-- hopefully not, but we can take

this code and we have this buffer. We could write a bunch of As to it-- I don't know,

quite a lot-- and see what happens. So hopefully this shouldn't crash my browser,

because Native Client is trying to provide isolation. But let's see what happens.

So we can rebuild it, rerun the web server. And here if you run it, nothing happens.

We don't get the message back anymore, so clearly the message didn't get sent

back from the Native Client module, because I don't see any popup. We can look at

the JavaScript console here, and we can see that the Native Client module tells us

NaCl module crash.

So somehow it caught this buffer flow scribbling over some memory, or maybe it

jumped to some bad address containing all As. But any case, the Native Client

module is actually able to contain this without this arbitrary sort of memory

corruption in the module affecting the rest of the browser. So this is roughly just a

quick demo of what the system is, and how you use it as an end user or web

developer.

So let's look now at some more. So that's all in terms of demos I have to show you.

So let's look more now at how a Native Client is going to work, or perhaps even why

we need this particular design as opposed to some of the alternatives.

So if your goal, I guess is to sandbox native code, there's a number of alternatives

you can make. People actually had these problems before, performance existing

legacy code and other languages before Native Client came around. And people

just solved them in different ways that maybe weren't as satisfying from a security

standpoint or usability standpoint as Native Client. But it is doable.

So let's see. So what could you do if you really want to run native code in a

browser? So one option that people did was to trust the developer. And maybe a

variant of this approach is to ask the user whether they want to run some piece of

code in their browser or not.

So does everybody understand roughly what the plan is, right? Like instead of

4



having that whole Native Client compilation strategy, I could have just built a simple

C program, served it up on the browser, and maybe the browser asked, do you

want to run this site or not? If I click yes, then it accidentally scribbled over the

browser's memory and crashes the browser.

So it's possible, right? It certainly solves all these goals, but what's wrong with it?

Well, I guess there's the insecurity part, which is unfortunate. One way to potentially

get around this-- and some systems did. Like Microsoft had the system called

ActiveX, that basically implemented this plan. You could serve binaries to IE, the

browser on your machine. And as long as it came with a certificate from particular

developer signed by let's say Microsoft or someone else, then it would actually run

this code. What do you guys think about this plan, is this useful? Yeah?

AUDIENCE: [INAUDIBLE].

PROFESSOR: That's right, yeah. So right, you really have to put quite a bit of trust into whoever it

is that's signing this, that they will only sign binaries that will not to do something

bad. But it's kind of vague what this bad thing is. And presumably they're just writing

C code and signing it blindly without doing a huge amount of work. In which case,

you might well be susceptible to some problems down the line. What if we ask the

user? Yeah?

AUDIENCE: [INAUDIBLE].

PROFESSOR: Oh yeah, yeah, yeah. Like the user's goal is to run this thing. And even if the user

wants to be cautious, it's actually not clear how should the user decide? Suppose I

really want to understand, should I allow this program to run? All it tells me is well,

maybe it's created from Google.com or Microsoft.com, and its file name as foo.exe.

I don't know, like what's in there? Even if I dissemble the code, it might be very hard

to tell whether it's going to do something bad or not.

So it's actually really hard to decide. So one way to think of Native Client is it's a

mechanism by which users can actually get some confidence whether they should

say yes or not to running this thing. So in practice, I guess like Paul Young, who was

5



giving his guest lecture last week, and he suggested that you should enable this

click to play extension in Chrome.

So every extension, including Native Client, you should rush click on this thing

before it starts running. So in some ways, that's ask the user. But then the user

actually has some sense, that well, if I click it, I'm still hopefully safe in the sense

that Native Client will protect me. So the two aren't necessarily exclusive, but you

really want some technical guarantee from Native Client that ensures that even if

you say yes, there are something meaningful that isn't enforcing your security. So

does this make sense? OK.

So the other I guess approach that people have taken, is to use an OS or hardware

sandboxing, or isolation. So this is things we looked at in the last couple of lectures.

So maybe you would use Unix, isolation mechanisms. Maybe if you had something

more sophisticated, if you're running a free [INAUDIBLE] maybe you would use

Capsicum. It seems very well suited to sandboxing some piece of code. Because

you can give it very few capabilities, and then it seems great. And Linux has a

similar mechanism called Seccomp that we briefly touched on in the last lecture,

that could allow you to do similar things.

So it seems like there is already a mechanism for writing code in isolation on your

machine. Why are these guys opposed to using this existing solution? Then they

are like reinventing the wheel for some reason. So what's going on? Yeah? Oh

yeah?

AUDIENCE: Maybe they want to minimize the [INAUDIBLE]?

PROFESSOR: Yeah, so in some sense, maybe they don't want to trust the operating system. So

maybe they're here, and they're actually worried about OS bugs. It might be that the

previous dekernel, the Linux kernel, has quite a lot of C code written that they don't

want to audit for correctness, or maybe can't even audit for correctness, even if they

wanted to. And in one of these Capsicum or Seccomp based isolation plan, you

probably do trust quite a bit of code in the kernel to be correct, for the sandbox to

actually hold and enforce isolation. Yeah?

6



AUDIENCE: As you get a lot more ways to use browsers and stuff, like you'd have to deal with

having some sort of thing you're doing with it on like iOS and Android, and all these

other things, accessing--

PROFESSOR: Yeah, so it's actually another interesting consideration is that normally my OSes

have bugs. But actually the OSs are incompatible with each other in some ways,

meaning that each OS has it's own-- like right here. Well, there's Unix, there's

Capsicum, there's Seccomp, but this is just a Unix variances. There's Mac OS

seatbelt, there's Windows something else, and the list just keeps going on and on.

So as a result, every platform you will have to use a different isolation mechanism.

And the thing that actually bothers them is not so much that they'll have to write

different code for Mac and Windows and Linux. But more of that, this impacts how

you write the thing inside of the sandbox. Because in Native Client, you actually

write a piece of code that runs the same way, or it's the same piece of code the

runs on Apple or Windows or Linux systems. And if you use these isolation

mechanisms, they actually impose different restrictions on the program being

sandboxed. So you'll have to write one program that's going to run inside of a Linux

sandbox, another program inside of a Windows sandbox, and so on. So this is

actually not acceptable to them. They don't want to deal with these kinds of

problems.

So are there other considerations? Yeah?

AUDIENCE: Presumably performance as well. Because if you say Capsicum, you need to fork up

a set of [INAUDIBLE], or whatever is running inside the sandbox. With here, they

can actually run it in the same [INAUDIBLE].

PROFESSOR: That's true, yeah. So potentially the approach they take, the software fault isolation

plan is actually highly performant, and could outperform these sandboxes at the OS

level. It turns out that in Native Client, they actually use both their sandbox and the

OS sandbox, just for extra precaution for safety. So they don't actually win on

performance in their implementation, but they could, right. Yeah?

7



AUDIENCE: There is some like control aspect to it. Because it can control what happens in the

browser, but if they sent one out to the client's machine into their OS, they sort of

don't necessarily know what might be happening to it?

PROFESSOR: So I guess maybe one way to think of that is that yeah, the OS might have bugs, or

my OS might not do as good of a job at sandboxing it. Or maybe the interface is a

little different, so you don't know what the OS is going to expose.

AUDIENCE: So it doesn't like prevent the code from doing some bad things. Like there are a lot

of cases of bad things that the code can just do, like maybe you want to statically

analyze the distance, but they both sit in a loop and then not allow that as a valid

program.

PROFESSOR: So you could, right? So their approach is quite powerful in the sense that you could

try to look for various kinds of problems in the code like maybe infinite loops, et

cetera. It's hard to decide, kind of like the holding problem, whether it's going to

have infinite loops or not. But in principle, you might be able to catch some

problems.

I think one actually interesting example that I almost didn't realize this sort of existed

before reading this paper, is these guys are worried about hardware bugs as well,

that not only are they worried that the operating system might have vulnerabilities

that the motions code will exploit. But also that the processor itself has some

instructions that will hang it, or it'll reboot your machine. And in principle, your

hardware shouldn't have such bug, because the operating system relies on the

hardware to trap into the kernel if there's anything bad executing user mode, so that

the operating system can take care of it.

But experimentally, it turns out that processors are so complicated that they do have

bugs, and these guys actually say, well, we actually found some evidence that this

happens. If you have some complicated instruction that the CPU wasn't expecting,

the CPU will actually halt instead of trapping to the kernel. This seems bad. But I

guess it's not a disastrous, if I'm sort of only running reasonable things on my

laptop. But it is bad if you visit some web page and your computer hangs.

8



So they want basically a stronger level of protection for these Native Client modules

than what you would get out of sort of an OS level isolation, even from a hardware

[INAUDIBLE] bug standpoint. So they're actually pretty cool. They're like really

paranoid about security, including hardware problems. All right, so any questions

about all these alternatives, how that works, or why these guys are not excited

about that? Makes sense? All right.

So I guess let's try to look at now, how Native Client does actually decide to

sandbox processes. Let me pull up these boards. So Native Client takes this

different approach that's in general called software fault isolation.

And the plan is actually not rely on the operating system or hardware to check

things at runtime, but instead to somehow look at the instructions ahead of time,

and decide that there are always going to be safe to execute. So actually look at the

binary, and you check all the possible instructions to see whether they're going to

be safe instructions or unsafe instructions.

And once you've decided that it's all going to be safe, you can just jump in and start

executing. Because you know it's all composed of safe things, so it cannot go

wrong.

So we'll talk about exactly what this means. But roughly what they're going to do is,

they're going to look at pretty much every instruction in the binary code that is

served up to the browser. And they're going to decide that particular instructions are

going to be safe or unsafe.

What do they do for safe instructions? Well, they're just going to allow them. What's

an example of a safe instruction? What are they thinking of that don't need any

extra checks or protections, et cetera?

AUDIENCE: [INAUDIBLE].

PROFESSOR: Yeah, so like any kind of ALU operation. Basically you have math, presumably

moves between registers and so on. So this doesn't actually affect the security of

9



the system, as far as they're concerned. Because all they really care about is things

like memory safety, where what code you execute, and so on. So as long as you

are just computing on some stuff, and registers, they don't really care. It's not going

to affect the rest of the browser.

So what about unsafe operations? I guess these are things that they might care

much more about. So this anything that maybe does a memory access, or maybe

some privileged instruction, maybe invoking a system call on this machine. Maybe

trying to jump out of the sandbox, who knows what? So for these kinds of

instructions, they are going to do one of two things.

If the instruction actually is necessary for the application to do it's job, like accessing

memory seems important, then they're going to somehow make sure that they can

execute this unsafe instruction safely. Or if you're jumping around for example in the

program's address space, [INAUDIBLE] what they're going to do is somehow

instrument the instruction.

And what instrumenting the instruction means is that you used to have one unsafe

instruction that sometimes does good things, that the application might actually want

to do legitimately. And sometimes the instruction can do bad things. So what

instrumenting it means is that you add some extra instructions before it, that it'll

check or enforce, but only good things are going to happen with that instruction.

So for example, if you are accessing a memory location, which you could do-- it

turns out, they don't do it for performance reasons-- but one way to instrument a

memory access would be to put some checks, like an if statement before the

instructions, saying, well, is this address you're accessing in range of what's allowed

for this module? And if so, do that-- otherwise, exit.

So that would instrument an instruction. And that would turn an unsafe instruction

into one that's always safe to execute, because there's always that check in front of

it. So does that make sense? This is their sort of big idea for running this enforcing

safety without support from that operating system at some level.

10



And I guess for other unsafe instructions, they don't instrument all of them. Some of

them they actually prohibit, if they believe that this is an instruction that's not really

necessary during normal operation, and if an application tried to run it, we should

just kill the application or not allow it to run in the first place.

Makes sense? Those are their sort of big plan for software fault isolation. And once

you've checked the application's binary, and it all passes, and everything seems to

be properly instrumented, then you can just run the program and off it goes. And by

definition almost, it will not do bad things, if we do all these checks and

instrumentation [INAUDIBLE].

And I guess there's one more part to the software fault isolation story, which is that

once you've make sure that everything is safe, then it can't actually do anything

terribly interesting, other than compute stuff in it's own little memory. So it can't

access the network, it can't access the disk, it can't access your browser, display,

keyboard, almost anything.

So pretty much every software fault isolation story, there's actually also some

trusted service runtime. And this trusted runtime is going to not be subject to these

checks on it's instructions. So the trusted runtime could actually do all these

potentially unsafe things. But this trusted runtime is written by Google. So hopefully

they get a [INAUDIBLE]. And it's going to implement all the functions that Google's

Native Client team believes are OK throughout for these modules.

So these are going to be things like maybe allocated memory, maybe creating a

thread, maybe communicating with the browser as we saw-- so some sort of a

message passing system, et cetera. And the way it's going to be exposed to this

isolated module is through certain presumably special jumps or operations that the

module is going to perform to transition control into this trusted runtime, but

hopefully in a very predictable way to-- question?

AUDIENCE: I'm just curious about, you have to design this application, knowing that it's going to

be sent to the NaCl module? Or does it like change the code to [INAUDIBLE]

making the [INAUDIBLE] sort of stuff bad?

11



PROFESSOR: So I think if you are building an application, you do have to be sort of aware that it's

going to be running inside of Native Client. So some function calls like malloc or

pthread_create, I think they just transparently are placed with calls to their trusted

runtime. But if you do anything like opening a file by path name, or anything else

that sort of you would expect to do on a Unix machine, that you would probably

have to replace with something else.

And you'd probably want to structure your thing to interact at least a little bit with

your JavaScript or web page in some way. And that you would have to do by

explicitly doing some message passing or RPCs into the JavaScript part. So that

you would have to probably change.

So there are some-- it's not like you can run an arbitrary Unix program in there, and

you'll just sort of get a shell and you can run commands all of a sudden. Probably if

you tried hard, maybe you could create such an environment. But by default, you

probably have to make it operate inside of this web page, and then [INAUDIBLE].

Does that make sense? All right. OK.

So that's the overall plan software fault isolation. So I guess let's look at actually

what safety means in their case for Native Client. So we talked loosely about this

notion of safe instructions, unsafe instructions-- what do they actually care about

here?

So as far as I can tell for Native Client, safety basically means two things. One is

that there's no disallowed instructions that it can execute. And these disallowed

instructions are things like maybe system calls or triggering an interop, which is

another mechanism on x86 to jump into the kernel and invoke a system call, and

probably other privileged instructions that would allow you to escape out of the

sandbox.

We'll look a little bit more later at what instructions could actually let you jump out of

a sandbox. And in addition to this no disallowed instructions rule, they also want to

make sure that all code and data accesses are in bounds for the module.

12



So what this means, is that they actually dedicate a particular part of the program's

address space-- specifically it goes from zero up to 256 megs in the process. And

everything that this untrusted module does has to refer to locations within this chunk

of memory in the program.

All right, so just to double check. So why do they want to disallow these instructions?

So what if they fail to disallow the instructions? Yeah?

AUDIENCE: The module can manipulate the system.

PROFESSOR: Right, so that's fairly straightforward, exactly, yeah. So it can just directly reboot the

machine or open your home directory and enumerate all the files, and do all these

things. So that seems like a good thing to do. Why do they care about this plan, like

isolating the coded data to only access these low addresses? What goes wrong if

they fail to do that? Yeah?

AUDIENCE: Then they can sort of accessing and interrupting [INAUDIBLE] module on the

computer.

PROFESSOR: Yeah.

AUDIENCE: We don't care if they ruin their own program and it crashes. That's fine, as long as

it's not going to crash the key to [INAUDIBLE].

PROFESSOR: Yeah, so in some sense, that's true. But in their case, they actually run the thing in a

separate process. So in theory, this would only crash that extra process. I think that

I guess what they're really worried about is that this is a necessary condition to

ensure this no disallowed instructions in some way, because there's other stuff, like

this trusted runtime in your process. So if what you really care about is not

corrupting the rest of your computer, then if the untrusted module can arbitrarily

jump into the trusted service runtime and do anything that the trusted service

runtime can do, then they could sort of violate this property. So in some ways, this is

really like a supporting mechanism for enforcing that.

In principle, this could also be used for lighter weight isolation if you could run this

13



Native Client module inside of the browser process itself, and not start an extra

process. But it turns out for performance reasons, they really have to tie down the

module to this particular range of memory, or it has to start at zero anyway. So this

means that you can only have one really Native Client untrusted module per

process. So you probably are going to start a separate process anyway. Makes

sense? Any questions? Yeah?

AUDIENCE: Is there actually a reason why it has to start at zero?

PROFESSOR: Yeah, so it turns out it's more efficient in terms of performance to enforce jump

targets, if you know that the legitimate address is a contiguous set of addresses

starting at zero, because you can then do it with a single AND mask, where all the

high bits are one, and only a couple of low bits are zero-- well, if you're willing-- well-

-

AUDIENCE: I thought the AND mask was to ensure [INAUDIBLE].

PROFESSOR: Right, so the AND mask ensures alignment, you're right. So why do they start at

zero? I think it probably helps them to-- well, I guess they rely on the segmentation

hardware. So in principle, maybe they could use the segmentation hardware to shift

the region up, in terms of linear space. Or maybe it's just with the application, sort of

sees this range. And you can actually place it at different offsets in your virtual

address space. It could be-- yeah, so maybe you could actually play tricks with the

segmentation hardware to run multiple models in a single address space.

AUDIENCE: But is it because they want to catch a null pointer reception?

PROFESSOR: Yeah, so they want to catch all points of reception. But you could sort of do that.

Because the null pointer-- I guess we'll talk about segmentation in a second, but the

null pointer actually is relative to the segment in which you are accessing. So if you

shift the segment around, then you can map an unused zero page at the beginning

of everyone's segment. So yeah, it might be that you could do multiple modules.

I think for-- well, because one reason they probably want to do this is that when they

port their stuff to 64 bits, they have a slightly different design. This paper doesn't

14



really talk about it. And I think about 64-bit design, the hardware itself got rid of

some of the segmentation hardware they were relying on for efficiency reasons, and

they have to do a much more software oriented approach, in which case having a

little bit doesn't help them. But in this 32-bit version, I think, yeah, maybe that's true.

That's not a deep reason why it has to start at zero. Other questions? All right.

So I guess we sort of roughly understand what the plan is, or what we want to

enforce in terms of safety. So how do we do this? So let's look at some of at least

naive approach, and see how could we screw it up, I guess, and then we'll try to fix

it afterwards.

So I guess the naive plan that sort of looks like what they do, is to just look for

disallowed instructions by just scanning the executable from the start going forward.

So how do you detect that instructions? Well, you could just take the program code,

and you sort of lay it out in a giant string that goes from zero up to maybe all the

way to 56 megabytes, depending on how big your code is, and you start looking.

OK, well, maybe there's a nop instruction here. Maybe there's some sort of an add

instruction there. Maybe there's a not-- I don't know, some sort of a jump, et cetera.

And you just keep looking. And if you find a bad instruction, you say, ah, that's a bad

module. And then you discard it. And if you don't see any system call [INAUDIBLE]

instructions, then you're going to allow this module to run, module or whatever it is

we'll do for the in bounds checks.

So is this going to work? So why not? What are they worried about? Why is so

complicated?

AUDIENCE: [INAUDIBLE] the instructions?

PROFESSOR: Yeah, so the weird thing is that x86, which is the sort of platform they are targeting

has a variable length instructions. So this means that the particular size of an

instruction depends on the first few bytes of that instruction. So you have to actually

look at the first byte and say, OK, well, the instruction is going to be this much more.

And then maybe you sort of have to look at a couple more bytes, and then decide,

OK, well, that's exactly how long it's going to be. But you don't know how ahead of

15



time. So some architectures like Spark, ARM, [INAUDIBLE], have more fixed length

instructions. Well, ARM, for example-- ARM is like weird, but it has two instructions

lengths. Either everything is two bytes or everything is four bytes. But x86, the

instructions could be like one byte or 10 byte or five bytes, anything in between, as

well.

I forget actually how big. You can get a pretty long instruction. I think you can get

like a 15 byte instruction with x86 if you try hard. It's complicated instructions,

though. But as a result, the problem that could show up is that maybe you're

scanning linearly and everything seems to be fine. But maybe at runtime, you'll

actually jump into the middle of some instruction. Maybe it was a multi-byte

instruction, if you interpret it starting from the second byte, it looks like a completely

different thing.

So that's just one example of sort of playing around with an assembler. And if you

have an instruction like this, 25 CD 80, 00, 00. And if you interpret it as this five byte

instruction, meaning that you look at this byte. And oh yeah, this is going to be a five

byte instruction. So you have to look five bytes forward. And then this turns out to be

a fairly benign instruction that's an and of the EAX register, with some particular

constant that happens to be I think 00, 00, 80, CD. anyway.

So this is one of the safe instructions that Native Client should just allow under the

first rule in checking these binary instructions. But if it turns out at runtime the CPU

decides this is where it has to start executing the code, then this instruction is

actually a four byte instruction, and its actually an int instruction that makes the

OX80 interrupt, which is one way to make system calls in Linux. So if you miss this

fact, then eventually you're going to allow untrusted module to jump into the kernel

and make system calls, which is what you wanted to prevent. Make sense? So how

can we prevent it? Like one possibility is like maybe we should try to look at every

byte offset. Because at least x86 can only start interpreting instruction on a byte

boundary instead of a bit boundary. So you like look at every single possible byte

off, and you see what instruction starts there. Is this a reasonable plan to report?

Yeah?

16



AUDIENCE: I mean, what if someone actually is doing an and, and they're never going to jump

into that. And now you're just allowing their program.

PROFESSOR: Right, so basically it's prone to eventually false positives. Now if you really wanted

to, you could probably contort yourself and change the code a little-- and somehow

avoid this. If you knew exactly what the checker was looking for, you could

potentially change these instructions. Maybe like end it with one thing first, and then

end it with another mask later. But just avoid these suspicious byte patterns. But

that just seems pretty awkward to do.

Now it is actually possible that the architecture does involve changing the compiler.

So in principle, they do have some component that actually has to compile the code

correctly. You can't just take of the shelf GCC and compile a code for Native Client.

So in principle it's doable. But I think they're just thinking it's too much hassle, and

it's not going to be reliable or high performance, et cetera. Make sense? And plus

there's a couple of x86 instructions that are prohibited or should be unsafe and

prohibited. But they're like one byte long, so that is going to be pretty damaging to

look for or filter out.

OK. So if they can't just assemble and sort of straight up and hope for the best, then

they need some other plan for doing this disassembly in a reliable fashion. So what

is that client or Native Client to ensure they don't get tripped up by this variable

length encoding? So I guess one way to think about it is, well, so how are we going

to solve this reliable disassembly?

So in some sense, if we really do scan forward from the left to the right, and we look

for all the possible up codes, if that's the way the code executes, then we're in good

shape. So even if there are some weird instruction and has some offset, then the

CPU isn't actually going to jump there. It actually executes the same way that we're

scanning the instruction screen from left to right.

So the problem with getting the disassembly to be reliable really comes from the

fact that there's jumps. Because if we execute linearly from left to right, then the

17



CPU will follow the same rules that our checker is following, and see the same

instruction screen. So the problem really comes down to what happens if there's a

jump somewhere in the application. Could a jump to some position in the code that

we didn't observe in our left to right scan?

So this is what they are sort of going another in the reliable disassembly. And the

basic plan is to just check where all the jumps go. It's actually fairly straightforward

at some level. They have a bunch of rules we'll look at in a second, but roughly the

plan is if you see a jump instruction, then it actually has to be-- well, you have to

check that the target was seen before.

So you basically do the left to right scan that we sort of described in our naive

approach here. But then if you see any kind of a jump instruction, then you see what

is the address to which the jump instruction is pointing to, and you make sure that

it's an address that you saw in your left to right disassembly.

So if there's a jump instruction for example that goes to that CD byte, then we're

going to flag that jump as invalid because we never saw an instruction starting in the

CD byte. We saw a different instruction. But if all the instruction, if all the jumps go to

the start of instructions we saw, then we're in good shape. Does that make sense?

So the one problem is that you can't check the targets of every jump in the program,

because there might be indirect jumps. For example in x86, you could actually have

something like jump to the value of that EAX register. This is great for implementing

function pointers. The function pointer somewhere in memory, then you hold to

function pointer into some register at one time. And then you jump to whatever

address was in the [INAUDIBLE] relocation register.

So how do these guys deal with these indirect jumps? So I have no idea if this

actually going to jump to the CD byte or the 25 byte. What do they do? Yeah?

AUDIENCE: The instrument [INAUDIBLE].

PROFESSOR: Yeah. So this is their basically main trick here, is instrumentation. So whenever they

see a jump like this, well actually what the compiler is going to generate is a proof

18



that this jump is actually going to do the right thing. And the way they actually do this

is-- they don't actually know-- it's actually kind of hard to put in a proof here that it's

one of the addresses that you saw during the left right disassembly. So instead what

they do is they want to make sure that all the jumps go to multiples of 32 bytes. And

the way they do this is actually change all the jump instructions into something that

they pseudo instructions. So they're still that jump to the EAX register.

But they prefix it with an AND instruction that is going to clear the low five bits, E 0

with an EAX register. So that AND instruction clears the low five bits, which means

that it forces this value to be a multiple of 32, two to the five. And then you jump to

it. So if you look at it during verification time, then you can sort of convince yourself

that this instruction pair will only jump to a multiple 32 bytes. And then in order to

make sure that this is not going to jump to some weird instruction, you're going to

enforce an extra rule, which is that during your disassembly, when you're scanning

your instructions from left to right, you're going to ensure that every multiple of 32

bytes is a start of a valid instruction.

So in addition to this instrumentation, you're also are going to check that every

multiple of 32 is a valid instruction. What I mean by valid instruction here is an

instruction that you see when you disassemble from left to right. Yeah?

AUDIENCE: Why 32?

PROFESSOR: Well, yeah, so why did they choose 32? That seems like some magic number that

they pulled out of a hat. Should you choose 1,000 or five? Any comment? OK,

should we choose five? So why is five bad?

AUDIENCE: The power of two.

PROFESSOR: Yes, OK, so we're on a power of two. OK, so good point. Because otherwise

ensuring something is a multiple of 5 is going to require a couple of instructions

here, which is going to lead overhead. How about eight? Is eight good enough,

yeah?

AUDIENCE: You can have instructions longer than eight.
19



PROFESSOR: Yeah, OK, so it has to be at least as long as the longest x86 instruction you want to

allow. So if there's a ten byte instruction, everything has to be a multiple of eight,

well, you're kind of screwed with a ten byte instruction. There's nowhere to put it. So

it has to be at least as long. 32 is pretty good, like the biggest I could find was 15

bytes. So it's probably good enough. Yeah?

AUDIENCE: Can [INAUDIBLE] be longer than [INAUDIBLE] code, they'd have to have a alt

instruction at the beginning of the [INAUDIBLE] so you can't just jumpt directly into

[INAUDIBLE] and they also need a jump instruction that jumps to another

[INAUDIBLE].

PROFESSOR: That's right, yeah. So you have to be able to fit for the entry and exit from the

process service runtime, you need to be able to fit some nontrivial amount of code

in a single 32 byte slot. We'll see how this works in a second. Or even 31 bytes slot,

as you are pointing out, for one hold instruction.

Should it be much larger? Should we make it, I don't know, a thousand byte, well,

10 24?

AUDIENCE: [INAUDIBLE] sparse, because you have to have [INAUDIBLE].

PROFESSOR: Yeah, so if you have a lot of function pointers or lots of sort of indirect jumps, then

every time you want to create some place where you're going to jump to, you have

to pad it out to the next boundary of whatever this value is. So with 32, maybe that's

OK. You're like well, worst case, you waste 31 bytes, because you just need to fast

forward to the next boundary. But if it's a multiple of 1024, then all of a sudden

you're wasting a kilobyte of memory for an indirect jump. And if you have probably

short functions or lots of function pointers, then this might actually be a memory

overhead all of a sudden, as well.

Does that make sense roughly? So yeah, I think the 32 is not set in stone. Like

Native Client has to have 32 byte blocks, but something on that order probably

works. 16 is probably a little short. On the other hand, like 64 could work. 128

20



maybe is getting a little longish. But I don't think you could derive 32 from first

principles. Makes sense? All right.

So let's set a plan for reliable disassembly. And as a result, the compiler has to be a

little bit careful when it's compiling your C or C++ code into a Native Client binary. It

has to basically follow these rules. So whenever it has a jump, it has to add those

extra instruction front. And whatever it's creating a function that it's going to jump to,

our instruction is going to jump to, as we're talking about, it has to pad it out. And it

can't just pad it out with zeros, because all those have to valid up codes. So it

actually has to pad it out with [INAUDIBLE] just to make the validator happy, just to

make sure that every possible instruction is a valid one. And luckily on x86, no op is

a single byte, or at least there is a no op-- that's a single byte. There's many no ops

on x86. So you can always pad things out to a multiple of whatever this constant is.

Make sense?

All right. So what does this guarantee to us? I guess let's make sure that we always

see what happens in terms of the instructions that will be executed. So this finally

gets us this rule. So we can be sure there's never a system call being issued. What

about-- So this is for jumps. What about returns? How do they deal with the returns?

Can you return for a function in Native Client? What would happen if you ran into a

red hot code? Would that be good? Yeah?

AUDIENCE: [INAUDIBLE] you don't want the-- [INAUDIBLE] modifying your overall [INAUDIBLE].

PROFESSOR: Well, it's true that it pops the stack. But the stack that Native Client modules use, it's

actually just some data inside of their section. So you don't actually care-- the Native

Client contact doesn't care whether those guys screws up their stacks, overflow

their stack, or--

AUDIENCE: Wait, but you could put anything on the stack. And when you [INAUDIBLE] you jump

through that--

PROFESSOR: That's true. Yeah, so return is almost like an indirect jump from a particular weird

memory location that's at the top of the stack. So I guess one thing they could do for

21



return is maybe prefix it with a similar check, where maybe like pop the top thing of

the stack. You check whether it's valid, and then you write, or you somehow do an

AND to a memory operand, and that's the top of the stack.

It seems a little fragile, partly because of race conditions. Because for example, if

you look at the top location of the stack, you check that it's OK, and then you do a

write later, another threat in the same module could modify the thing at the top of

the stack. And then you'd be referring to that address.

AUDIENCE: Would this not be the case for the jumps as well?

PROFESSOR: Yeah, so what happens with the jump? Could our race conditions somehow

invalidate this check? Yeah?

AUDIENCE: The code is not writable.

PROFESSOR: Well the code is not writable, that's true. So you can't modify the AND. But could

another thread modify this jump target in between these two instructions? Yeah?

AUDIENCE: It's in a register, so--

PROFESSOR: Yeah, that's the cool thing. There is basically-- if it modifies it in memory or where

ever it loaded into EAX from, sure, you do it before you load, in which case this EX

will be bad, but then will clear the bad bits. Or it could modify it after, at which point

it's already in the EX, so it doesn't matter that it's modifying the memory location

from which the EX register was loaded. And threads don't actually share the register

sets. So if another thread modifies the EX register, it will not affect this thread's EX

register. So this instruction actually is sort of race-proof in some sense. Other

threads can't invalidate this instruction sequence. Make sense? All right.

So here's another interesting question. Could we bypass this AND? I can jump

around in this address space all I want. And when I'm disassembling this instruction,

this seems like a perfectly fine parallel instruction, an AND and a jump. And the

check for static jumps is that, well, it just has to point to some target that was seen.

So yeah, we saw an AND. That's one instruction that's valid. We saw a jump, that's

22



another valid instruction.

So when I see a direct jump up here, maybe I jump to some address. I don't know,

one, two, three, seven. That's actually OK, even though it's not a multiple of 32.

Native Client doesn't generally allow direct jumps to arbitrary addresses, as long as

that address is a instruction that we saw during disassembly, as we were just talking

about. So could I put in this very nicely checked indirect jump, and then later on in

the code jump to the second instruction in that sequence? So then I'll load

something into EX, jump here, and then directly jump into this unsandboxed

address. That will violate the security, right? Does everyone see that? So how is this

avoided?

AUDIENCE: Well, the NaCl [INAUDIBLE] and the jump has to signal instruction.

PROFESSOR: Yeah, so this is why they call this thing a single pseudo instruction. And even though

at the x86 level, they're actually distinct instruction, as far as the NaCl validator

thinks of it, it's actually a single atomic unit. So as far as this check for whether it's

an instruction that you saw before, they think, oh, this is the only instruction that I

saw before. Jumping in the middle is like jumping in the middle of this guy. It's the

same thing. So they basically enforce slightly different semantics than what x86

enforces in terms of what an instruction is.

And this might actually mean that you can represent certain instruction sequences

in NaCl. So if you actually had legitimate code that looked like this before, this is

going to be turned into a single out code in NaCl. But hopefully that's not a problem.

Yeah?

AUDIENCE: Presumably they can out that in the trusted code base in the start of the text

segment. Because that way, you will always replace those two. Instead of putting

those in the binary that you produce anyway, you just jump straight to that jump

target that's in the privileged section.

PROFESSOR: In the trusted runtime, you mean or something?

AUDIENCE: No, so in the first 64 K--

23



PROFESSOR: Yeah, they had these trampolines and yeah--

AUDIENCE: So they can make that one of the trampolines. Except that it doesn't jump out. It

jumps back in.

PROFESSOR: Right.

AUDIENCE: So that way, it wouldn't need to be a super instruction. It would just be a single x86

jump into there, which would then jump out again.

PROFESSOR: That's true, yeah. That's another sort of clever solution that you could do, is instead

for the deliverance of [INAUDIBLE] so suppose that you didn't want to do this

pseudo instruction trick, and you just wanted to have a single instruction replacing

the jump EAX. Well, what you can basically come up with is a library of all possible

indirect jumps you can ever do. So like well, there is jump EAX, there's jump EBX,

and so on. And you would construct a library of these guys for each of them, you

would construct the safe check that you'd want to replace them with. So for this one,

you'd put an AND in front of it, and so on. And for this one, you'll also put an AND in

front of it, and so on.

And then in the compiled binary, every time you want to jump to EAX, what you

actually do, is actually jump to a fixed address that corresponds to this helpful piece

of code stored somewhere in that low 64 k of the program. And then this guy will do

the AND and jump again. The reason that they probably don't do this is

performance for this sort of interesting reason.

So that Intel processor, actually most processors these days, have to predict where

the branch goes to keep the pipeline of the processor full at all times. It's one of the

really complicated branch predictor that not only decides whether you're going to

branch or not, like if statements. But also actually guesses where you're going to

jump. So if you see an indirect jump, it actually is going to guess what the address is

going to be. And this is actually a guess that's stored per cache line stored in the

jump instruction.

24



So if you have a single place where all the jump EAXs come from, then the CPU is

always going to be very confused. Because these jump EAXs seem to be going all

over the place, everywhere. Where as if we are really tied to a particular jump

instruction, it would be a better prediction. That's just a performance trick that they

play. Make sense? All right.

So I guess we roughly understand how it's going to disassemble all of these

instructions how it's going to prevent these instructions. So now let's look at the set

of rules they are going to enforce through this table in the paper, table one. And it

has all these different rules for the validator to follow, or that the binaries have to

follow and the validator checks. So I'll go through these rules and just double check

that we understand why all these rules are there. So we have these things, C1, all

the way to C7. So C1 basically says that once you load the binary memory, then the

binary is actually not writable at the page table level. So they set the permission bits

for the binary can be non-writable. So why? It should be fairly obvious hopefully.

The reason is that their whole security plan relies on them checking that your binary

is correct. So once they've checked it, they want to make sure you can't modify the

binary and have it do something illegal that they prohibited. So this is I think

reasonably clear then.

So C2 is their plan that basically has to linked at zero at start at 64 K. So this

requirement, I think doesn't actually have to do with security so much. I think it's just

for convenience, because they just want to have a standard layout for the program.

In some sense, it's for simplicity so that they don't have to deal with complicated

relocation records, which means that there's fewer things that the validator or a

loader might screw up. But basically this is sort of a standardization plan for them, in

terms of how to load their executable. Make sense?

All right. So the third requirement is that I guess the indirect jumps use the two

instruction. So the two instruction is this thing above. So that, we just talked about,

why it needs to ensure this, so that you don't jump to the middle of some instruction,

or somehow invoked [INAUDIBLE], et cetera. Make sense? All right.

25



So what's going on with C4? Basically you have to pad out two page boundary with

a halt instruction. Why do they want to pad their binary out with halts? Any ideas?

Yeah?

AUDIENCE: [INAUDIBLE].

PROFESSOR: Yeah, I think-- so I have to admit, I don't have a crisp answer for why C4 exists. But

I think it's roughly what you are saying, which is that if you-- the code naturally stops

at some point. There's some end to it. And the question is, what happens when you

just keep executing it, and you get to the end? Then the processor might just keep

executing past the end, and execute some extra instructions. Or maybe it wraps

around in some weird way. So they just want to make sure that there's no ambiguity

about what happens if you keep running and you don't jump, and you just run off

the end of the instruction screen. So let's just make sure that the only answer there

is if you keep executing, you'll halt, and you'll trap into the runtime, and you'll

terminate the module. So it's just sort of about simplicity and safety, [INAUDIBLE]. I

don't think there's a concrete attack that I could have [INAUDIBLE].

AUDIENCE: [INAUDIBLE].

PROFESSOR: Yeah. But here's the thing. You can't jump past the end. So the last thing that you

could jump to is the last instruction. And by this rule, that instruction must be hold.

So you could jump to the hold, but then would be at the hold. And you want to run

past the end. So I think it's just sort of cleanliness, as far as I can tell, a guarantee

for them to make sure that there's no weirdness in terms of wrap around at the

engine. All right? So C5 is basically no instructions that span the 32 byte boundary.

So this is sort of a variant of this rule that we talked about before, where every

multiple of 32 must be a valid instruction that we solder in disassembly.

So otherwise, we'll jump to the middle of an instruction and have the problem with

that sys call that might be hidden there. OK. And then we have C6, which is

basically all instructions reachable by disassembly from the start. So this ensures

that we see every instruction, and we can check every instruction that could possibly

be run at runtime. And I guess C7 is this basically all direct jumps. OK. So this is the

26



example of that jump up there, where you code in the target right away. So it

doesn't have a multiple of 32, but it still has to be a valid instruction that we solder in

the left to right disassembly. Question?

AUDIENCE: So what's the difference between C5 and C3?

PROFESSOR: Yeah. So I think C5 says that if I have an instruction that's multiple bytes, it cannot

stay on that 32 byte boundary. So suppose that I have my instruction stream. And

here's an address, 32. Here's address 64. And maybe I have some sort of an AND

instruction that sort of spans this boundary. So this is what C5 prohibits. No

instructions can span this boundary. Because otherwise, we saw this AND

instruction. But because you can always jump 32 byte multiples, you could jump into

the middle of that. And who knows what will happen there? So this is what C5

prohibits for that.

And C3 is the counterpart to it on the jump side. So C3 says that whenever you

jump, you're going to jump to a multiple of 32 bytes. And C5 says that everything

you can find in a multiple of 32 bytes is a safe instruction.

AUDIENCE: I wonder if there's any redundancy because [INAUDIBLE].

PROFESSOR: Yeah, I don't know. I'm not sure. I had a little bit of that feeling when reading this list.

It seems like, wow, they're all good rules. But I'm not sure it's the minimal, non-

orthonormal set of-- or set of orthonormal rules that you need to enforce this. But

any other questions about the set of restrictions they have? All right.

So I guess let's think about this homework question that we sort of assigned. It turns

out-- I think there was actually a bug that Native Client had and that's in our

sandbox at some point, which is that for some complicated instruction, I believe they

didn't have the length encoding correctly, if I remember properly, in which case

something bad might happen. I can't remember exactly what the bug was. But

suppose that the sandbox validator gets the length of some instruction wrong. What

bad things could happen? How would you exploit this?

AUDIENCE: You can hide a sys call or a [INAUDIBLE] potentially.

27



PROFESSOR: Yeah. So suppose that there's some fancy variant of some AND instruction that you

could write down. And maybe the validator gets that wrong and thinks that, oh, this

guy is actually six bytes, when in reality, it's five bites long. So you could plop this

down, pull this AND down. And then the validator thinks, oh, it's six bites. I'll look six

bites further. And I'll check whether this is a valid instruction. And we just have to

make sure that whatever is six bytes later looks like a valid instruction. But the CPU

itself, when it runs this code, is going to maybe only look five bytes from the AND

because that's the real length of the instruction. So if we can use this extra byte to

stick a sys call instruction, then we could be in business.

So if we stick that-- remember from that example above on x86, OXCD is how you

make an AND instruction. So if we stick a CD byte at the end of that AND, then

maybe we can put something here that looks like an instruction but actually is going

to be part of the AND instruction here. And then we can all of a sudden make a sys

call and escape the inner sandbox. Makes sense? Any questions? So the validator

in Native Client has to be really in sync with what the CPU is doing because it's sort

of guessing, well, here's exactly how the CPU is going to interpret every instruction.

It has to be right at every level here.

So that's going to be a little bit tricky to do right. But there are actually some other

interesting bugs in Native Client that people have found. One, I think, has to do with

not properly sanitizing the environment of the CPU when you're jumping into the

trusted service runtime. I guess we'll talk about this in a second. But the trusted

service runtime is going to basically run with the same sort of set of CPU registers

initially that the untrusted module was running with. So if there's something that it

forgets to clear or reset or whatnot, then the trusted service runtime might be

tricked into doing something that it wasn't meant to do, or the developers didn't want

to do it initially.

OK. So let's see. Where are we now? So what we understand now is roughly how

we can disassemble all the instructions and how to prevent disallowed instructions.

So now let's look at, how do we keep the memory and references for both code and

28



data within the bounds of the module? So for performance reasons, the Native

Client guys actually start using some hardware support at this point to make sure

this actually doesn't impose much overhead. But before we look at the hardware

support they use, does anyone have any suggestions for how we could do it actually

without any hardware support? Could we just enforce all the memory accesses

going in bounds with the machine we have so far? Yeah.

AUDIENCE: You can instrument the instructions to clear all the higher bits.

PROFESSOR: That's right. Yeah. So actually we see that we have this instruction over here, which

every time we, for example, jump somewhere, right now, we clear the low bits. But if

we want to keep all the possible code that you're executing within the low 256 Megs,

then you could just replace this with a 0. So we end with 0ffffe0. So this clears the

low bits and also caps to at most 256 Megs. So this does exactly what you're sort of

suggesting and would make sure that whenever you're jumping, you're saying within

the low 256 Megs. And the fact that we're doing disassembly, you can also check

for all the direct jumps, that they're all in bounds.

And that's actually not so bad. The reason I think they don't do this for code is

because in x86 you can very efficiently encode an AND where all the top bits are 1.

So this turns out to be, I think, basically a 3 byte instruction for the AND, and a 2

byte instruction for the jump. So the overhead is, like, 3 more bytes. But if you want

to have non-1 high bits, then this is actually now a 5 byte instruction all of sudden.

So I think they're worried a little bit about the overhead here. Question?

AUDIENCE: Isn't there also the problem that you might have some instructions which increment

what version that you're trying to get? So you might say-- your instruction might

have a constant offset or something like that.

PROFESSOR: Well, I think, yeah. You would probably prohibit instructions that jump to some

complicated formula of an address. So you will only support an instruction that

jumps directly to this value. And this value always gets ANDed and--

AUDIENCE: It's more for memory accesses rather than--

29



PROFESSOR: Yeah. So that's a good point because this is just code. And for memory access,

there's lots of weird ways on x86 to refer to a particular memory location. In that

case, you basically have to first compute the memory location, then insert an extra

and, and then do the access. And I think that's the real reason why they're actually

very worried about the performance overheads of this instrumentation. So on x86,

at least on the 32-bit, which is what this paper talks about, they actually use some

hardware support instead to limit the code and data addresses that the untrusted

module can refer to.

So this actually leverages some somewhat esoteric hardware in x86. So let's see

what it looks like first before we start figuring out how we're going to use it to

sandbox the next module. So this hardware is called segmentation. It's sort of left

over from the days before x86 actually even had paging. So the way it works is

actually there's a segmentation on x86. They way it works is that whenever a

process is running, there's actually a table maintained by the hardware. Let's call it

the segment descriptor table.

And what this table has is just a bunch of segments, numbered from 0 up to

whatever the size of the table is, kind of like file descriptor in Unix. Except every

entry has two values in it, some sort of a base and a length. And the same for every

entry, base and length. OK. So what this table does is it tells us that we have a

couple of segments. And whenever we refer to a particular segment, what this in

some sense means is that we're talking about a chunk of memory that starts at

address base and goes for this length from that base upwards. And the way that

this actually helps us to enforce memory bounds is that on x86, every single

instruction in one way or another, whenever it's talking about memory, actually talks

about memory with respect to a particular segment in this table.

So for example, when you actually do something like move a memory value from a

pointer stored in the EAX register into maybe another pointer stored in the EBX

register, what you think it does is it figures out, well, what's this address? It knows

the memory at this address. And then it figures out, OK, what's this address? And it

stores the value there. But in fact on x86, whenever you're talking about memory,

30



there's an implicit-- what's called a segment descriptor, which is kind of like a file

descriptor in Unix. It's just an index into this descriptor table. And unless specified

otherwise, every opcode has a default segment in it.

So when you're doing a move, this is actually relative to the DS or the data segment

register. So it's like a special register in your CPU that's a 16-bit integer, if I

remember correctly. And that 16-bit integer points into the descriptor table. And the

same here. This is actually the relative to that DS segment selector. Actually, a

bunch of these guys are 6 segment selectors on x86. There's a code selector CS,

DS, ES, FS, GS, and SS. And the code selector is sort of implicitly used to fetch the

instructions. So if your instruction pointer points somewhere, it's actually relative to

what the CS segment selector says.

And most data references implicitly use either DS or ES. And then FS and GS are

some special things. And SS is always used for the stack operations. If you push

and pop, they implicitly come off of this segment selector. It's a fairly baroque

machinery, but it turns out to be hugely useful for this particular use case because

what happens is if you access some address at maybe some selector DS: some

offset or some address here, what the hardware will actually do is translate it into--

well, it'll put this address, and it'll add the table of DS, the base to this guy. And it'll

actually take the address modulo the length from the same table.

So whenever you're doing a memory access, it's actually going to have the base of

your segment selectors, sort of descriptor table entry, and take your address that

you're actually specifying and mod it with the length of the corresponding segment.

Does this make sense? It's a little baroque, but that's what [INAUDIBLE].

AUDIENCE: So why isn't this used, for example, for buffer protection?

PROFESSOR: Yeah. It's a good question. So could you use this for protecting against buffer

overflows? What's the plan? You could basically set up-- for every buffer that you

have, you could put the buffer's base here. You can put the size of the buffer there.

AUDIENCE: What if you don't need to put it there before you want to write to it? You wouldn't

31



need it there constantly.

PROFESSOR: Yeah. So I think the reason that this isn't used so much for protecting against buffer

overflows is that this table has at most 2 to the 16 entries because these descriptors

are actually 16 bits long. And in fact, a couple of the bits are used for other stuff. So

in fact, I think you can only stick 2 to the 13 entries here. So if you have more than 2

to the 13 variable size array things in your code, then it's probably going to overflow

this table. That was actually a little bit weird for the compiler to manipulate this table

because the way you actually manipulate it is through system calls.

So you can't actually directly write to this table. You have to issue a system call to

the operating system. And the operating system will pull this table into the hardware

for you. So I think most compilers just don't bother having this complicated story for

managing buffers. Multex actually did this though. So on Multex, you actually kind of

have 2 to the 18 distinct segments and 2 to the 18 possible offsets within a

segment. And every possible shared library chunk or chunk of memory was a

distinct segment. And then they would all be range checked, not maybe at the

variable level. But still. Yeah.

AUDIENCE: Presumably, it's also a bit slower if you have to tap into the kernel all the time to--

PROFESSOR: That's right. Yeah. So there's also the overhead. I guess to set this up, there would

be some overhead. Or if you create a new buffer on the stack, all of a sudden, you

have to call in to this guy and add an extra. So yeah, it is nice machinery. But it's

mostly used for coarser grain things because of the overhead of changing it a bit.

Makes sense? All right. So how many of these guys actually use now the

segmentation machinery? Well, you can sort of guess how it works. I guess by

default all these segments in x86 have a base of 0 and a length of 2 to the 32. So

you can access the entire range of memory you could possibly want.

So for Native Client, what they do is code in a base of 0 and a length of 256 Megs.

And then they point all these six segment selector registers to this entry for a 256

Meg region. So then whenever the hardware does a memory access, it's going to

mod it. The offset was 256 Megs. So it'll be restricted to the 256 Meg range of

32



memory that's allowed for the module to [INAUDIBLE] modify. Makes sense? All

right. So I guess we sort of roughly understand now this hardware support and how

this works and how you could eventually do the wealth segment selectors.

So if we just implement this plan, is there anything that could go wrong? Could we

escape out of the segment selector in the untrusted module? I guess one thing you

have to watch out for is that these registers are just like regular registers. And you

can actually move values in and out of them. So you have to make sure that the

untrusted module doesn't tamper with these registers, the segment selectors,

because somewhere in your descriptor table is also the original segment descriptor

for your entire process, which has a base of 0 and a length of 2 to the 32.

So if the untrusted module could somehow change the CS or DS or ES or any of

these guys to point to this original operating system that covers your entire address

space, then you could then do memory references with respect to this segment and

get out of this sandbox. So as a result, Native Client has to add some more

instructions to this prohibited list. So I think they basically prohibit all instructions that

move into a segment selector DS, ES, et cetera, so that once you're in the sandbox,

you cannot change the segment that you are referencing things with respect to.

Makes sense? Yeah.

AUDIENCE: The segmentation such and such provides [INAUDIBLE].

PROFESSOR: Yeah. So it turns out that on x86, the instructions to change the segment descriptor

table are privileged. But changing these indices into the table are completely

unprivileged. Yeah. Other questions? Yeah.

AUDIENCE: Can you initialize the table to put all 0 lengths in the unused slots?

PROFESSOR: Well, yeah. So the unused slots-- you could-- yeah. You can set the length of the

table to something so there are no unused slots. It turns out that you actually need

this extra slot containing 0 and 2 to the 32 because the trusted run time is going to

need to run in this segment and access the entire memory range. So you need this

entry in there for the trusted runtime to work. Question?

33



AUDIENCE: [INAUDIBLE] set list? In order to set the table output to some length, do you need

to--

PROFESSOR: No, actually. It's pretty cool. It was like something that you don't have any root for.

On Linux, there's actually a system called-- I think it's called modify_ldt for local

descriptor table. And it lets any process modify its own table. These tables are

actually per process. Well, as everything in x86, it's actually more complicated.

There's a global table, and there's a local table. But the local table is for a process

you can modify [INAUDIBLE]. Makes sense? All right. OK.

So I guess one thing we could now try to figure out is, how do we jump in and out of

the Native Client runtime or out of the sandbox? So what does it mean for us to

jump out? So we need to run that trusted code. And the trusted code lives

somewhere up above the 256 Meg limit. And in order to jump there, we basically

have to undo all these protections that Native Client sets in place. And they basically

boil down to changing these selectors. So we already-- I guess our validator isn't

going to enforce the same rules for the stuff above 256 Megs. So that's easy

enough. But then we need to somehow jump into the trusted runtime and reset

these segment selectors to the right values, to this giant segment that covers the

entire process address space.

So the way that works on Native Client is through this mechanism they call

trampolines and springboards. So all these guys are things that live in the low 64k of

the module. And the cool thing about that is that these are going to be sort of

chunks of code laying at the lower 64k of that process space. So that means that

this untrusted module can actually jump there because it's a valid code address. It's

going to be on the 32 byte boundary potentially. And it's going to be within the 256

Meg limit. So you can jump to these trampolines. But the Native Client runtime is

going to actually copy these trampolines from somewhere outside. So the Native

Client module isn't allowed to supply its own trampoline code. The trampoline code

comes from the trusted runtime.

So as a result, it actually contains all these sensitive instructions, like moving DS

34



and CS, et cetera, that the untrusted code itself is not allowed to have. So the way

you actually jump out of the sandbox and into the trusted runtime to do something

like malop or create a threat is you jump to a trampoline, which lives at a 32 byte

offset. So maybe it's an address. Well, who knows? Maybe it's 4,096 plus 32. And

it's going to have some instructions to basically undo these segment selectors. So

what it's probably going to do is it's going to move some value-- I don't know, maybe

7-- into the DS register and maybe some points to this entry here that's allowed for

the entire 2 to the 32 address space.

And then you're going to effectively move CS and then jump somewhere up into the

service runtime. And this is basically going to be past 256 Megs. So there's going to

be this jump in here that's not regularly allowed. But we're going to be OK with it

because it's going to be into a point in the trusted service runtime that is expecting

these jumps. And it's going to perform proper checks afterwards on the arguments

and whatever else that is being passed around. And we can actually do this, move

DS here, because we know that it's actually safe. The code we're going to jump to

isn't going to do anything arbitrary or funny with our untrusted module. Makes sense

roughly, what's going on?

So why do these guys bother jumping out of the segments? Like, why not just put

the whole thing in the trampoline? It seems like more work on some level. Yeah.

AUDIENCE: We only have 64.

PROFESSOR: Yeah, you don't actually have a lot of space. Well, I guess you have 64k. So that's

potentially maybe enough for-- maybe you can move a malop in there. But the

problem is not so much the 64k thing but this 32 byte restriction. And it's actually not

a restriction on the trusted code, because the trusted code can do whatever it wants

here. It's not going to be checked. The problem is that the untrusted code can jump

to every 32 byte offset. So every 32 byte offset has to be prepared to be very

special in its arguments. So you probably are going to have a hard time writing this

code here with every 32 bytes rechecking the arguments and values and so on.

So basically, you have to jump out of the trampoline and into the runtime up here

35



within 32 bytes of code. So then if you jump to the next thing, then, well, something

else is going to happen here. But it's not part of this same trusted routine here.

Makes sense? OK. So this is how you sort of jump out of the sandbox. To jump

back in, you also need to-- you basically need to invert these transformations. You

need to sort of set the DS back and CS back and so on. And the tricky thing is that if

you're running outside of this 256 Meg limit, if you're running inside of the trusted

run time, then you can't really reset these registers yet, because otherwise, you

won't then be able to access any of the memory in your space outside.

So what they actually do is they have this thing called a springboard, which is how

the trusted runtime from outside the 256 Meg limit is actually going to jump back

into the Native Client module. So here it's going to reload the DS register with

maybe whatever that limit in the segment descriptor is. Maybe let's say it's 1. And

then it's going to reset other things, and then it'll jump to whatever address the

trusted runtime wants to return to in the untrusted module. Makes sense? So this is

how you sort of jump back in. And the only sort of tricky piece here is that you don't

want the untrusted code to jump into the springboard itself. Maybe something weird

will happen. Who knows?

So what they do is they actually put a halt instruction as the first byte of this 32 byte

multiple sequence. So if you jump to the beginning of this guy, you'll immediately

halt. The trusted runtime is going to jump to one past this byte and be able to

execute the springboard. But this is something that only the trusted runtime can do

because regularly checked, this is not going to be allowed. Question?

AUDIENCE: Wait. Is it a springboard in the untrusted module?

PROFESSOR: So the springboard is within the 0 to 256 Meg part of the untrusted module. But it

actually lives in that 64 bit chunk at the very beginning that doesn't actually come

from the binary you download from some website. But it's actually patched into it by

the Native Client runtime when it first loads this module into memory.

AUDIENCE: Why not just have it in the runtime?

36



PROFESSOR: Yeah. So why not have it in the runtime? So what happens if the runtime was

allowed to supply the springboard? Is this bad? Yeah.

AUDIENCE: How would it know-- how would it know where to jump back to?

PROFESSOR: Well, I think what this actually is is it actually jumps to something like EAX. So the

trusted runtime says, oh, I want to return to this address. It puts it on the EAX

register, jumps here. The springboard does this, this, this and then jumps to EAX,

wherever the trusted runtime's set up to jump. So what if the module came with its

own springboard?

AUDIENCE: Well, you could do it as a natural jump type thing. But it shouldn't know anything

about the descriptor table. That's a hardware--

PROFESSOR: Yeah. So actually, this is a really important instruction for sandboxing, the fact that

we reload that descriptor to point at one of those limited descriptors up there. It's

really important. And if the module was allowed to supply its own springboard,

maybe it'll just skip this part and then not restrict itself back to 256 Megs. So once

you jump through the springboard, you'll be able to still access the entire process

address space. So the springboard is part of the enforcement mechanism. It sort of

sets up the boundaries. So this is the reason why I think they don't want the

springboard to come from the developer. Now-- yeah, question?

AUDIENCE: Can you put the springboard past 256 megabytes?

PROFESSOR: So I think they don't want to put the springboard past the 256 Megs because then

you might have trouble jumping down. So you want to jump to a particular address,

but you also want to set up extra registers here. So if you're-- I think this basically

has to-- sorry. This has to do with setting that CS code descriptor segment because

you want to set the code descriptor segment to this bounded segment, and you

want to jump to some particular address at the same time. So I think it's easier for

these guys to do it through a springboard because you first sort of jump to here.

Then you can set your CS value. But you can still execute the same code you're still

running because you're within the 256 bound. Makes sense? I think basically it has

37



to do with what atomic primitives the hardware provides to you. So basically, you

want to set a whole bunch of these DS segment selector registers and the CS

register and jump to somewhere at the same time. So this is one way for them to do

it. I think that's maybe not as [INAUDIBLE]. Probably, if you tried hard, you could

probably come up with some x86 instruction sequence that could do it from outside

the bound of the address space in the module. Makes sense? All right. So I guess

that's it for Native Client. And I'll see you guys next week. We'll talk about web

security as far as I know.

38


