
6.857 Homework Problem Set 1 # 1-3. Detecting Pad Reuse
Anonymous
Anonymous
Anonymous April 6, 2014

Part (a)

We are given f(n) = poly(n) n-bit ciphertexts c1, . . . , cf(n), each from a unique plaintext/pad pair.
Our goal is to show that the upper bound on the longest run of matching bits between any two
ciphertexts, at any offset, is log2 n + log2 lnn = log2 (n lnn) with high probability [Piazza:18].

First, let’s consider a particular pair of ciphertexts ci and cj (i 6= j) with no offset. We can model the
longest run of matching bits within the n bits of ci and cj as the longest run of heads in n coin flips,
where a coin flip represents matching bits at the same position. Since each ciphertext is encrypted
from a one-time pad (chosen independently and uniformly at random), 0 and 1 bits are equally
likely. Therefore, the probability of matching bits at the same position is 1 = 0.5. Using the fact2
from the problem, the longest run R0.5(n) is, with high probability, less than log 1 n+log 1

0.5
lnn =

0.5

log2 (n lnn).

Next, let’s consider a particular pair of ciphertexts offset by k bits (0 � k < n). There are 2n− 1
possible offsets. We can model this as above, finding the upper bound for the longest run of matching
bits within the n − k bits of ci and cj . Since n − k � n, R0.5(n − k) � R0.5(n) = log2 (n lnn), so
the upper bound from above still holds.

F(ina�lly, let’s put it all together for the f(n) ciphertexts. The longest run may occur in any of
f(n) pa(irs of� ciphertexts, each at any of 2n − 1 offsets. The number of pairs/offsets is f ′(n) =2

(2n − 1) f(n) = (2n2 − 1) � 1f(n)(f(n) − 1) which, since f(n) is poly(n), is also poly(n). We next2
show that the log2 (n lnn) upper bound holds for all these pairs/offsets with high probability.

For each possible pair ci and cj and offset, the longest run common to ci and cj is less than
log2 (n lnn) with high probability p(n). That means that for any asymptotically positive polynomial
q(n), p(n) > 1− 1 , for all sufficiently large n [Piazza:14]. Let a polynomial q̂(n) = Ω(f ′(n)). Thenq(n)

p(n) > 1− 1 . The probability that the upper bound does not hold for a particular pair/offset isq̂(n)

1− p(n) < 1 . The probability that it does not hold for at least one pair/offset among the fq̂(n)
′(n)

is, by union bound, less than f ′(n) � 1
q̂(n) = 1

q̂′(n) , where q̂′(n) = q̂(n) . q̂ (′ n) is an asymptoticallyf ′(n)

positive polynomial because we chose q̂(n) to asymptotically dominate f ′(n) and both are positive.
The probability that the upper bound holds for all pairs/offsets is p′(n) � 1 − 1 . In fact, forq̂′(n)

any asymptotically positive polynomial q(n), p′(n) > 1− 1 because we can repeat the argumentq(n)

� q(n)above for a sufficiently large q̂(n)

6

≤

≤ ≤

)
)
)

·

≥

≥ .f ′(n)

Therefore, the upper bound on the longest run of matching bits between any two ciphertexts, at
any offset, is log2 (n lnn) with high probability p′(n).

8

·

Part (b)

We plotted the upper bound of ciphertext from part (a) and superimposed it on the provided
graph. We assume that the English plaintext is encoded as US-ASCII characters, each 7 bits long.
Since n here is the text length (in characters), the upper bound of ciphertext (in characters) is
1 log7 2 (7n ln 7n).

log2 n vs. longest run.
Blue curve: English plaintext (average). Orange curve: ciphertext (upper bound).

The “random” ciphertext dominates at the beginning because there is more flexibility in matching
bits than matching 7-bit US-ASCII characters: (1) the bits can match across 7-bit boundaries; (2)
there are more characters to match in the plaintext: 26 English letters, plus punctuation; and (3)
the ciphertext is an upper bound, while the plaintext is just an average. But, interestingly, the
plaintext average dominates the ciphertext upper bound when log2 n > 9. We reason that matching
characters occur more frequently there because the English language has a lot of redundancy: high
frequency of e, the strong tendency for h to follow t or for u to follow q, etc. (formalized by Claude
Shannon in “Prediction and Entropy of Printed English” in 1951).

Therefore, for sufficiently large n, the average longest runs within English plaintext are larger
than even the upper bound on longest runs within ciphertext. On the graph above, it appears as
exponential vs. linear.

Part (c)

We are given f(n) = poly(n) n-bit ciphertexts c1, . . . , cf(n), and two of them reuse the same pad.
Our goal is to find those those ciphertexts in quasilinear time in N = j|c1 � �· · �· cf(n)j| = n � f(n).

9

Idea We assume that each pair of ciphertexts, at any offset, with independently chosen one-time
pads do not share a long common substring [Piazza:11]. From part (a), the length of a common
substring is less than log2 (n lnn) bits with high probability. We assume that each pair of plaintexts
share a long common substring [Piazza:11]. Therefore, if ciphertexts corresponding to the plaintexts
are encrypted with the same pad, then they also share a long common substring. The graph from
part (b) shows that, for sufficiently large n, its length is greater than log2 (n lnn). Therefore, we
can take log2 (n lnn) as the separator between pad reuse and no pad reuse.

Algorithm In the following algorithm, we find the longest common substring between any two
ciphertexts and detect pad reuse if its length is > log2 (n lnn).

1. Let the alphabet Σ = f0, 1, $1, . . . , $f(n)g, which represents the bits and f(n) special termi-
nators. Append the terminators to the ciphertexts, and concatenate them into one string
S = c1$1 � � � cf(n)$f(n).

2. Construct a suffix tree for S.
3. Traverse the suffix tree to find the internal node with the highest depth d.
4. If d � log2 (n lnn), then output no pad reuse. Otherwise, follow a path of edges from the

node down (i.e., toward a leaf) until an edge label contains a special terminator $i. This path
corresponds to a suffix of ciphertext ci. Since an internal node must have � 2 children, repeat
this process along a different path—until an edge label contains $j . Output ci and cj .

Correctness Using the procedure stated in the problem, Step 3 finds the longest repeated sub-
string of S. In a suffix tree, the depth d corresponds to its length. There are three cases of where
it might occur in S:

1. In different ciphertexts, a substring of ci and a substring of cj :
This case is desired, because it corresponds to the longest common substring of a pair of
ciphertexts. Correctness follows from the idea paragraph. If there is no pad reuse, then
d � log2 (n lnn). Otherwise there is, and the special terminators $i and $j identify the
ciphertexts ci and cj that reuse the same pad.

2. In the same ciphertext, a substring of ci and a substring of ci:
This case is not desired, because it corresponds to longest common substring between a
ciphertext and itself at an offset of k bits. However, we can model this using part (a), since
the successive bits of the pad are independent. The longest run of matching bits within the
n � k bits of ci and the offset ci is less than R0.5(n � k) � R0.5(n) = log2 (n lnn). This
correctly corresponds to no pad reuse.

3. Across ciphertexts, a substring of ci$icj and a substring of S:
This case never occurs because the special terminator $i only appears once in S.

Running Time Step 1 (concatenating the ciphertexts) takes O(N) time. Step 2 (building the
suffix tree) takes O(N log jΣj) = O(N log f(n)) = O(N logN) time [Piazza:25]. Step 3 (traversing
for longest repeated substring) takes O(N) time, as stated in the problem. Step 4 (traversing to
identify ci and cj) takes 2 � O(n) time, since the internal node is � n edges away from an edge
label containing the special terminator. This dominates computing log2 (n lnn), which involves
operations on log2 n-bit numbers. Therefore, the total time is O(N logN), quasilinear in N .

10

{ }

≤

≥

≤

≤

≤

| |

· · ·

−−

MIT OpenCourseWare
http://ocw.mit.edu

6.857 Network and Computer Security
Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

