The Probabilistic Method

Idea: to show an object with certain properties exists

- generate a random object
- prove it has properties with nonzero probability
- often, "certain properties" means "good solution to our problem"

Last time

- set balancing
- expanders

The Probabilistic Method for Expectations

Outline

- goal to show exists object of given "value"
- give distribution with greater "expected value"
- deduce goal

Max-Cut:

- Define
- NP-complete
- Approximation algorithms
- factor 2
- "expected performance," so doesn't really fit our RP/ZPP framework

Wiring

Sometimes, it's hard to get hands on a good probability distribution of random answers.

- Problem formulation
 - $-\sqrt{n} \times \sqrt{n}$ gate array
 - Manhattan wiring
 - boundaries between gates
 - fixed width boundary means limit on number of crossing wires
 - optimization vs. feasibility: minimize max crossing number

- focus on single-bend wiring. two choices for route.
- Generalizes if you know about multicommodity max-flow
- Linear Programs, integer linear programs
 - Black box
 - Good to know, since great solvers exist in practice
 - Solution techniques in other courses
 - LP is polytime, ILP is NP-hard
 - LP gives hints—rounding.
- IP formulation
 - $-x_{i0}$ means x_i starts horizontal, x_{i1} vertical
 - $T_{b0} = \{i \mid \text{net } i \text{ through } b \text{ if } x_{i0}\}$
 - $-T_{b1}$
 - IP

$$\min_{x_{i0} + x_{i1} = 1} w$$

$$\sum_{i \in T_{b0}} x_{i0} + \sum_{i \in T_{b1}} x_{i1} \le w$$

- Solution \hat{x}_{i0} , \hat{x}_{i1} , value \hat{w} .
- rounding is Poisson vars, mean \hat{w} .
- For $\delta < 1$ (good approx) $\Pr[\geq (1+\delta)\hat{w}] \leq e^{-\delta^2 \hat{w}/4}$
- need 2n boundaries, so aim for prob. bound $1/2n^2$.
- solve, $\delta = \sqrt{(4 \ln 2n^2)/\hat{w}}$.
- So absolute error $\sqrt{8\hat{w} \ln n}$
 - Good (o(1)-error) if $\hat{w} \gg 8 \ln n$
 - Bad $(O(\ln n) \text{ error})$ if $\hat{w} = 2$ (invoke other chernoff bound)
 - General rule: randomized rounding good if target logarithmic, not if constant

MAX SAT

Define.

- literals
- clauses
- NP-complete

random set

- achieve $1 2^{-k}$
- very nice for large k, but only 1/2 for k=1

LP

$$\sum_{i \in C_j^+} y_i + \sum_{i \in C_j^-} (1 - y_1) \ge z_j$$

Analysis

- $\beta_k = 1 (1 1/k)^k$. values 1, 3/4, .704, ...
- Random round y_i
- Lemma: k-literal clause sat w/pr at least $\beta_k \hat{z}_i$.
- proof:
 - assume all positive literals.
 - $\text{ prob } 1 \prod (1 y_i)$
 - maximize when all $y_i = \hat{z}_j/k$.
 - Show $1 (1 z/k)^k \ge \beta_k z$.
 - concave, so check equality at z = 0, 1
- Result: (1-1/e) approximation (convergence of $(1-1/k)^k$)
- much better for small k: i.e. 1-approx for k=1

LP good for small clauses, random for large.

- Better: try both methods.
- n_1, n_2 number in both methods
- Show $(n_1 + n_2)/2 \ge (3/4) \sum \hat{z}_i$
- $n_1 \ge \sum_{C_j \in S^k} (1 2^{-k}) \hat{z}_j$
- $n_2 > \sum \beta_k \hat{z}_i$
- $n_1 + n_2 \ge \sum (1 2^{-k} + \beta_k) \hat{z}_j \ge \sum \frac{3}{2} \hat{z}_j$

Method of Conditional Probabilities and Expectations

Derandomization.

- Theory: is P=RP?
- practice: avoid chance of error, chance of slow.

Conditional Expectation. Max-Cut

- Imagine placing one vertex at a time.
- $x_i = 0$ or 1 for left or right side
- $E[C] = (1/2)E[C|x_1 = 0] + (1/2)E[C|x_1 = 1]$
- Thus, either $E[C|x_1=0]$ or $E[C|X_1=1] \geq E[C]$
- Pick that one, continue
- More general, whole tree of element settings.
 - $\text{ Let } C(a) = E[C \mid a].$
 - For node a with children b, c, either C(b) or $C(c) \ge C(a)$.
- By induction, get to leaf with expected value at least E[C]
- But no randomness left, so that is actual cut value.
- Problem: how compute node values? Easy.

Conditional Probabilities. Set balancing. (works for wires too)

- Review set-balancing Chernoff bound
- Think of setting item at a time
- Let Q be bad event (unbalanced set)
- We know Pr[Q] < 1/n.
- $Pr[Q] = 1/2 Pr[Q \mid x_{i0}] + 1/2 Pr[Q \mid x_{i1}]$
- Follows that one of conditional probs. less than Pr[Q] < 1/n.
- More general, whole tree of element settings.
 - Let $P(a) = \Pr[Q \mid a]$.
 - For node a with children b, c, P(b) or P(c) < P(a).
 - -P(r) < 1 sufficient at root r.
 - at leaf l, P(l) = 0 or 1.
- One big problem: need to compute these probabilities!

Pessimistic Estimators.

- Alternative to computing probabilities
- three necessary conditions:
 - $\hat{P}(r) < 1$
 - $-\min\{\hat{P}(b), \hat{P}(c)\} < \hat{P}(a)$
 - $-\hat{P}$ computable

Imply can use \hat{P} instead of actual.

- Let $Q_i = \Pr[\text{unbalanced set } i]$
- Let $\hat{P}(a) = \sum \Pr[Q_b \mid a]$ at tree node a
- Claim 3 conditions.
 - HW
- Result: deterministic $O(\sqrt{n \ln n})$ bias.
- more sophisticated pessimistic estimator for wiring.

Oblivious routing

- \bullet recall: choose random routing. Only 1/N chance of failure
- Choose N^3 random routines.
- whp, for every permutation, at most $2N^2$ bad routes.
- given the N^3 routes, pick one at random.
- so for any permutation, prob 2/N of being bad.
- Advantage: N^3 routes can be stored