Announcements

No class monday.

Metric embedding seminar.

Review

expectation
notion of high probability.
Markov.

Today: Book 4.1, 3.3, 4.2

Chebyshev.

Remind variance, standard deviation. 0% = E[(X — px)?]

E[XY] = E[X|E[Y] if independent

variance of independent variables: sum of variances
Pr[| X — p| > to] = Pr[(X — p)? > t20? < 1/2

So chebyshev predicts won’t stray beyond stdev.
binomial distribution. variance np(1 — p). stdev \/n.

requires (only) a mean and variance. less applicable but more powerful
than markov

Balls in bins: err 1/1n”n.

Real applications later.



Chernoff Bound

Intro
e Markov: Pr[f(X) > z] < E[f(X)]/=.
e Chebyshev used X2 in f
e other functions yield other bounds
e Chernoff most popular
Theorem:

e Let X; poisson (ie independent 0/1) trials, E[>. X;] = u

PriX > (1+€)pu| <

e’ a
(1+ 6)“*5)] '
e note independent of n, exponential in pu.

Proof.

e For any t > 0,
PriX > (1+¢)u] = Prlexp(tX) > exp(t(1+€)u)]
Elexp(tX)]
exp(t(1 + €)p)

e Use independence.

Elexp(tX)] = H Elexp(tX;)]
Elexp(tX;)] = pie’ + (1—py)
= l+p(e'=1)

< exp(pi(e’ — 1))
[Texp(pi(e’ — 1)) = exp(u(e’ — 1))

e So overall bound is ,
exp((e! — 1))
exp(t(1 + €)u)

True for any ¢. To minimize, plug in ¢t = In(1 + ¢).
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e Simpler bounds:

— less than e #€*/3 for e < 1
— less than e #<*/4 for € < 2¢ — 1.

— Less than 2-(F9% for larger e.

e By same argument on exp(—tX),

e

PriX < (1 —e)u] < m]

bound by e~*/2.
Basic application:
e cnlogn balls in ¢ bins.
e max matches average
e a fortiori for n balss in n bins
General observations:
e Bound trails off when € ~ 1/,/1, ie absolute error /g

e 10 surprise, since standard deviation is around g (recall chebyshev)

o If 1 = Q(logn), probability of constant e deviation is O(1/n), Useful if
polynomial number of events.

e Note similarito to Gaussian distribution.
e Generalizes: bound applies to any vars distributed in range [0, 1].

Zillions of Chernoff applications.



Median finding.

First main application of Chernoff: Random Sampling

e List L

median of sample looks like median of whole. neighborhood.

e analysis via Chernoff bound

e Algorithm
— choose s samples with replacement
— take fences before and after sample median
— keep items between fences. sort.

e Analysis

— claim (i) median within fences and (ii) few items between fences.

— Without loss of generality, L contains 1, ..., n. (ok for comparison
based algorithm)

— Samples s1, ..., S, in sorted order.
— lemma: S, near rn/s.

* Expected number preceding k is ks/n.
« Chernoff: w.h.p., Yk, number elements before k is (1£¢;)ks/n,

where €, = 1/(6nlnn)/ks.
« Thus, when k& > n/4, have ¢, < e =,/24Inn/s)

Write € = 4/241nn/s.

Stteks/n >k

S, >rn/s(1+¢€)

S, <rn/s(l—e).

— Let ro = 5(1 —¢)

Then w.h.p., 5(1 —¢€)/(1+¢€) < S, <n/2
— Let ry = 5(1 —¢)

Then S,, > n/2

* % X %



— But S, — S,, = O(en)
e Number of elements to sort: s
e Set containing median: O(en) = O(n\/W).
e balance: O(log(n??)) in both steps.

Randomized is strictly better:
e Gives important constant factor improvement
e Optimum deterministic: > (2 + ¢)n
e Optimum randomized: < (3/2)n + o(n)

Book analysis slightly different.

Routing
Second main application of Chernoff: analysis of load balancing.
e Already saw balls in bins example
e synchronous message passing
e bidirectional links, one message per step
e queues on links
e permutation routing
e oblivious algorithms only consider self packet.

e Theorem Any deterministic oblivious permutation routing requires
Q(y/N/d) steps on an N node degree d machine.

— reason: some edge has lots of paths through it.

— homework: special case
e Hypercube.

— N nodes, n = log, N dimensions

5



Nn directed edges
— bit representation
— natural routing: bit fixing (left to right)

— paths of length n—lower bound on routing time

Nn edges for N length n paths suggest no congestion bound
— but deterministic bound Q(y/N/n)

e Randomized routing algorithm:

— O(n) = O(log N) randomized

— how? load balance paths.
e First idea: random destination (not permutation!), bit correction

— Average case, but a good start.

— T'(e;) = number of paths using e;

— by symmetry, all E[T'(e;)] equal

— expected path length n/2

— LOE: expected total path length Nn/2

— nN edges in hypercube

— Deduce E[T(e;)] =1/2

— Chernoff: every edge gets < 3n (prob 1 —1/N)

e Naive usage:

— n phases, one per bit
— 3n time per phase
— O(n?) total

e Worst case destinations

— Idea [Valiant-Brebner] From intermediate destination, route back!

— routes any permutation in O(n?) expected time.

— what’s going in with /N/n lower bound?



— Adversary doesn’t know our routing so cannot plan worst permu-
tation

e What if don’t wait for next phase?

— FIFO queuing

— total time is length plus delay

— Expected delay < E[>T'(e;)] = n/2.

— Chernoff bound? no. dependence of T'(e;).

e High prob. bound:

— consider paths sharing ¢’s fixed route (ey, ..., ex)

— Suppose S packets intersect route (use at least one of e,)
— claim delay < |S|

— Suppose true, and let H;; = 1 if j hits ¢’s (fixed) route.

E[Y_ Hj]
E[Z T(el)]
n/2

E[delay]

VAN VAN VAN

— Now Chernoff does apply (H;; independent for fixed i-route).
— 1S =0(n) w.p. 1 —27°" so O(n) delay for all 2" paths.

e Lag argument

— Exercise: once packets separate, don’t rejoin
— Route for i is p; = (eq,. .., ex)

— charge each delay to a departure of a packet from p;.

Packet waiting to follow e; at time ¢t has: Lag t — j
— Delay of ¢ is lag crossing ey,

— When i delay rises to [ + 1, some packet from S has lag [ (since
crosses e; instead of 7).

Consider last time ¢" where a lag-l packet exists on path



* some lag-l packet w crosses e at t' (others increase to lag-
(1+1))

% w leaves at this point (if not, then [ at e; ;1 next time)

* charge one delay to w.

Summary:
e 2 key roles for chernoff
e sampling
e load balancing

e “high probability” results at log n means.



