
Randomized incremental construction 

Special sampling idea: 

• Sample all except one item 

• hope final addition makes small or no change 

Method: 

• process items in order 

• average case analysis 

• randomize order to achieve average case 

• e.g. binary tree for sorting 

Backwards analysis 

• compute expected time to insert Si−1 → Si 

• backwards: time to delete Si → Si−1 

• conditions on Si 

• but generally analysis doesn’t care what Si is. 

Randomized incremental sorting 

Funny implementation of quicksort 

• repeated insert of item into so-far-sorted 

• each yet-uninserted item points to “destination interval” in current partition 

• bidirectional pointers (interval points back to all contained items) 

• when insert x to I, 

– splits interval I (x is “pivot” for I) 

– must update all I-pointers to one of two new intervals 

– finding items in I easy (since back pointers) 

– work proportional to size of I 

• If analyze insertions, bigger intervals more likely to update; lots of quadratic terms. 

Backwards analysis 

• run algorithm backwards 

• at each step, choose random element to un-insert 

1 



•	 find expected work


works because:
• 

–	 condition on what first i objects are 

–	 which is ith is random 

– discover didn’t actually matter what first i items are. 

Apply analysis to Sorting: 

•	 at step i, delete random of i sorted elements 

•	 un-update pointers in adjacent intervals 

•	 each pointer has 2/i chance of being un-updated 

•	 expected work O(n/i).


true whichever are i elements.
• 

•	 sum over i, get O(n log n) 

•	 compare to trouble analyzing insertion 

–	 large intervals more likely to get new insertion 

–	 for some prefixes, must do n − i updates at step i. 

Convex Hulls 

Define 

• assume no 3 points on straight line.


• output:


–	 points and edges on hull 

–	 in counterclockwise order 

–	 can leave out edges by hacking implementation 

Ω(n log n) lower bound via sorting 
algorithm (RIC): 

•	 random order pi 

•	 insert one at a time (to get Si) 

•	 update conv(Si−1) → conv(Si) 

–	 new point stretches convex hull 

2 



–	 remove new non-hull points 

– revise hull structure 

Data structure: 

•	 point p 0 inside hull (how find? centroid of 3 vertices.) 

•	 for each p , edge of conv(S i) hit by �p 0p 

•	 say p cuts this edge 

•	 To update p i in conv(S i−1): 

–	 if p i inside, discard 

–	 delete new non hull vertices and edges 

– 2 vertices v 1, v 2 of conv(S i−1) become p i-neighbors


– other vertices unchanged.


•	 To implement: 

–	 detect changes by moving out from edge cut by �p 0p . 

– for each hull edge deleted, must update cut-pointers to � p iv 1 or � p iv 2 

Runtime analysis 

•	 deletion cost of edges: 

–	 charge to creation cost 

–	 2 edges created per step 

–	 total work O (n ) 

•	 pointer update cost 

–	 proportional to number of pointers crossing a deleted cut edge 

–	 backwards analysis 

∗	 run backwards 
∗	 delete random point of S i (not conv(S i)) to get S i−1 

∗	 same number of pointers updated 
∗	 expected number O (n/i )


what Pr[update p ]?
· 
Pr[delete cut edge of p ]· 
Pr[delete endpoint edge of p ]· 
2/i· 

∗	 deduce O (n log n ) runtime 

•	 Book studies 3d convex hull using same idea, time O (n log n ), also gets voronoi diagram 
and Delauney triangulations. 

3 



Linear programming. 

define• 

• assumptions: 

– nonempty, bounded polyhedron 

– minimizing x1 

– unique minimum, at a vertex 

– exactly d constraints per vertex 

definitions:• 

– hyperplanes H 

– basis B(H)


– optimum O(H)


• Simplex 

– exhaustive polytope search: 

– walks on vertices 

– runs in O(nd/2) time in theory


– often great in practice


• polytime algorithms exist, but bit-dependent! 

• OPEN: strongly polynomial LP 

• goal today: polynomial algorithms for small d 

Randomized incremental algorithm 

d 
T (n) ≤ T (n− 1, d) + (O(dn) + T (n− 1, d− 1)) = O(d!n) 

n 

4 


