
Geometry

Model

RAM•

• operations on reals, including sqrts.

•	 (why OK)

•	 line segment intersections

DISCRETE randomization
•

Applications:

•	 graphics of course

•	 any domain where few variables, many constraints

Point location in line arrangements

setup:

•	 n lines in plane

•	 gives O(n2) convex regions

•	 goal: given point, find containing region.

•	 for convenience, use triangulated T (L)

•	 triangulation introduces O(n2) segments (planar graph)

• assume all inside a bounding triangle

how about a binary space partition?

•	 single line splits input into two groups of n-1 rays

• search time (depth) could be n

A good algorithm:

•	 choose r random lines R, triangulate

•	 inside each triangle, some lines.

•	 good if each triangle has only an(log r)/r lines in it

•	 will show good with prob. 1/2

•	 recurse in each triangle—halves lines

1

�

Lookup method: O(log n) time.
Proof of good

•	 As with cut sampling, consider individual “problem” events, show unlikely

•	 Let Δ be all triplets of L-intersections

•	 when δ ∈ Δ is bad:

–	 let I(δ) be number of lines hitting δ

–	 let G(δ) be lines that induce δ (at most 6)

–	 for bad δ, must have all lines of G(δ) in R (call this B1(δ)), no lines of I(δ) in R
(call this B2(δ).

•	 bound prob. of bad δ:

–	 we know

Pr[δ] ≤ Pr[B1(δ)] Pr[B2(δ) B1(δ)]
|

(why not equal? Because triangulation may not create triangle from δ)

– Given B1(δ), still need r − G(δ) ≥ r − 6 ≥ r/2 drawings (assuming r > 12)| |
–	 prob. none picked is at most

(1 − |I(δ)|
)r/2 ≤ e−rI(δ)/2n

n

–	 Only care if I(δ) > an(log r)/r—large triplets

–	 Pr[B2(δ) | B1(δ)] ≤ r−a/2 for large triplet

•	 prob. some bad at most

r−a/2 Pr[B1(δ)]
δ

•	 sum is expected number of large triplets.

–	 at most r2 points in sample

–	 at most (r2)3 = r6 triplets in sample

–	 expectation at most r6

–	 choose a > 12, deduce result.

Construction time:

Recurrence•

T (n) ≤ n 2	 2+�(r))+ cr 2T (an
log r

) = O(n
r

•	 � decreasing with r

•	 by choosing large r, arbitrarily close to O(n2)

2

Randomized incremental construction

Special sampling idea:

•	 Sample all except one item

• hope final addition makes small or no change

Method:

•	 process items in order

•	 average case analysis

•	 randomize order to achieve average case

• e.g. binary tree for sorting

Randomized incremental sorting

•	 Funny implementation of quicksort

•	 repeated insert of item into so-far-sorted

•	 each yet-uninserted item points to “destination interval” in current partition

•	 bidirectional pointers (interval points back to all contained items)

•	 when insert x to I,

–	 splits interval I (x is “pivot” for I)

–	 must update all I-pointers to one of two new intervals

–	 finding items in I easy (since back pointers)

–	 work proportional to size of I

• If analyze insertions, bigger intervals more likely to update; lots of quadratic terms.

Backwards analysis

•	 run algorithm backwards

•	 at each step, choose random element to un-insert

•	 find expected work

works because:
•

–	 condition on what first i objects are

–	 which is ith is random

–	 discover didn’t actually matter what first i items are.

3

Apply analysis to Sorting:

•	 at step i, delete random of i sorted elements

•	 un-update pointers in adjacent intervals

•	 each pointer has 2/i chance of being un-updated

•	 expected work O(n/i).

true whichever are i elements.
•

•	 sum over i, get O(n log n)

•	 compare to trouble analyzing insertion

–	 large intervals more likely to get new insertion

–	 for some prefixes, must do n − i updates at step i.

Convex Hulls

Define

• assume no 3 points on straight line.

• output:

–	 points and edges on hull

–	 in counterclockwise order

–	 can leave out edges by hacking implementation

Ω(n log n) lower bound via sorting
algorithm (RIC):

•	 random order pi

•	 insert one at a time (to get Si)

•	 update conv(Si−1) → conv(Si)

–	 new point stretches convex hull

–	 remove new non-hull points

– revise hull structure

Data structure:

•	 point p0 inside hull (how find? centroid of 3 vertices.)

•	 for each p, edge of conv(Si) hit by �p0p

4

• say p cuts this edge

• To update pi in conv(Si−1):

– if pi inside, discard

– delete new non hull vertices and edges

– 2 vertices v1, v2 of conv(Si−1) become pi-neighbors

– other vertices unchanged.

• To implement:

– detect changes by moving out from edge cut by �p0p.

– for each hull edge deleted, must update cut-pointers to � p iv2iv1 or � p

Runtime analysis

• deletion cost of edges:

– charge to creation cost

– 2 edges created per step

– total work O(n)

• pointer update cost

– proportional to number of pointers crossing a deleted cut edge

– backwards analysis

∗ run backwards

∗ delete random point of Si (not conv(Si)) to get Si−1

∗ same number of pointers updated

∗	 expected number O(n/i)

what Pr[update p]?
·
Pr[delete cut edge of p]·
Pr[delete endpoint edge of p]·
2/i·

∗ deduce O(n log n) runtime

Book studies 3d convex hull using same idea, time O(n log n), also gets voronoi diagram and
Delauney triangulations.

5

