
Geometry 

Model 

RAM•


• operations on reals, including sqrts.


•	 (why OK) 

•	 line segment intersections


DISCRETE randomization
• 

Applications: 

•	 graphics of course 

•	 any domain where few variables, many constraints 

Point location in line arrangements 

setup: 

•	 n lines in plane 

•	 gives O(n2) convex regions 

•	 goal: given point, find containing region. 

•	 for convenience, use triangulated T (L) 

•	 triangulation introduces O(n2) segments (planar graph) 

• assume all inside a bounding triangle 

how about a binary space partition? 

•	 single line splits input into two groups of n-1 rays 

• search time (depth) could be n 

A good algorithm: 

•	 choose r random lines R, triangulate 

•	 inside each triangle, some lines. 

•	 good if each triangle has only an(log r)/r lines in it 

•	 will show good with prob. 1/2 

•	 recurse in each triangle—halves lines 
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Lookup method: O(log n) time. 
Proof of good 

•	 As with cut sampling, consider individual “problem” events, show unlikely 

•	 Let Δ be all triplets of L-intersections 

•	 when δ ∈ Δ is bad: 

–	 let I(δ) be number of lines hitting δ 

–	 let G(δ) be lines that induce δ (at most 6) 

–	 for bad δ, must have all lines of G(δ) in R (call this B1(δ)), no lines of I(δ) in R 
(call this B2(δ). 

•	 bound prob. of bad δ: 

–	 we know


Pr[δ] ≤ Pr[B1(δ)] Pr[B2(δ) B1(δ)]
| 

(why not equal? Because triangulation may not create triangle from δ) 

– Given B1(δ), still need r − G(δ) ≥ r − 6 ≥ r/2 drawings (assuming r > 12)| | 
–	 prob. none picked is at most


(1 − |I(δ)| 
)r/2 ≤ e−rI(δ)/2n


n 

–	 Only care if I(δ) > an(log r)/r—large triplets 

–	 Pr[B2(δ) | B1(δ)] ≤ r−a/2 for large triplet 

•	 prob. some bad at most 

r−a/2 Pr[B1(δ)] 
δ 

•	 sum is expected number of large triplets. 

–	 at most r2 points in sample 

–	 at most (r2)3 = r6 triplets in sample 

–	 expectation at most r6 

–	 choose a > 12, deduce result. 

Construction time: 

Recurrence• 

T (n) ≤ n 2	 2+�(r))+ cr 2T (an 
log r 

) = O(n 
r 

•	 � decreasing with r 

•	 by choosing large r, arbitrarily close to O(n2) 
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Randomized incremental construction 

Special sampling idea: 

•	 Sample all except one item 

• hope final addition makes small or no change 

Method: 

•	 process items in order 

•	 average case analysis 

•	 randomize order to achieve average case 

• e.g. binary tree for sorting 

Randomized incremental sorting 

•	 Funny implementation of quicksort 

•	 repeated insert of item into so-far-sorted 

•	 each yet-uninserted item points to “destination interval” in current partition 

•	 bidirectional pointers (interval points back to all contained items) 

•	 when insert x to I, 

–	 splits interval I (x is “pivot” for I) 

–	 must update all I-pointers to one of two new intervals 

–	 finding items in I easy (since back pointers) 

–	 work proportional to size of I 

• If analyze insertions, bigger intervals more likely to update; lots of quadratic terms. 

Backwards analysis 

•	 run algorithm backwards 

•	 at each step, choose random element to un-insert 

•	 find expected work


works because:
• 

–	 condition on what first i objects are 

–	 which is ith is random 

–	 discover didn’t actually matter what first i items are. 
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Apply analysis to Sorting: 

•	 at step i, delete random of i sorted elements 

•	 un-update pointers in adjacent intervals 

•	 each pointer has 2/i chance of being un-updated 

•	 expected work O(n/i).


true whichever are i elements.
• 

•	 sum over i, get O(n log n) 

•	 compare to trouble analyzing insertion 

–	 large intervals more likely to get new insertion 

–	 for some prefixes, must do n − i updates at step i. 

Convex Hulls 

Define 

• assume no 3 points on straight line.


• output:


–	 points and edges on hull 

–	 in counterclockwise order 

–	 can leave out edges by hacking implementation 

Ω(n log n) lower bound via sorting 
algorithm (RIC): 

•	 random order pi 

•	 insert one at a time (to get Si) 

•	 update conv(Si−1) → conv(Si) 

–	 new point stretches convex hull 

–	 remove new non-hull points 

– revise hull structure 

Data structure: 

•	 point p0 inside hull (how find? centroid of 3 vertices.) 

•	 for each p, edge of conv(Si) hit by �p0p 
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• say p cuts this edge 

• To update pi in conv(Si−1): 

– if pi inside, discard 

– delete new non hull vertices and edges 

– 2 vertices v1, v2 of conv(Si−1) become pi-neighbors


– other vertices unchanged.


• To implement: 

– detect changes by moving out from edge cut by �p0p. 

– for each hull edge deleted, must update cut-pointers to � p iv2iv1 or � p

Runtime analysis 

• deletion cost of edges: 

– charge to creation cost 

– 2 edges created per step 

– total work O(n) 

• pointer update cost 

– proportional to number of pointers crossing a deleted cut edge 

– backwards analysis 

∗ run backwards 

∗ delete random point of Si (not conv(Si)) to get Si−1 

∗ same number of pointers updated 

∗	 expected number O(n/i)


what Pr[update p]?
· 
Pr[delete cut edge of p]· 
Pr[delete endpoint edge of p]· 
2/i· 

∗ deduce O(n log n) runtime 

Book studies 3d convex hull using same idea, time O(n log n), also gets voronoi diagram and 
Delauney triangulations. 
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