
Counting Problems 

Two big pieces: 

1. Equivalence of counting and generating via self reducibility 

2. Generating via Markov chains 

Volume 

Outline: 

•	 Describe problem. Membership oracle 

•	 �P hard to volume intersection of half spaces in n dimensions 

•	 In low dimensions, integral. 

•	 even for convex bodies, can’t do better than (n/ log n))n ratio


what about FPRAS?
• 

Estimating π: 

•	 pick random in unit square


check if in circle
• 

•	 gives ratio of square to circle 

•	 Extends to arbitrary shape with “membership oracle”


Problem: rare events.
• 

• Circle has good easy outer box 

Problem: rare events: 

•	 In 2d, long skinny shapes 

• In high d, even round shape has exponentially larger bounding box 

Solution: “creep up” on volume 

•	 modify P to contain unit sphere B1, contined in larger B2 of radius r with r/r1 poly­
nomial 

•	 choose ρ = 1 − 1/n. 

•	 Consider sequence of bodies ρirP ∩ B2 

•	 note for large i, get P 
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•	 but for i = 0, body contains B2


so volume known
• 

•	 so just need ratios 

• At each step, need to random sample from ρirP ∩ B2 

Sample method: random walk forbidden to leave 

•	 MC irreducible since body connected 

•	 ensure aperiodic by staying put with prob. 1/2 

•	 markov chain is “regular graph” so uniform stationary distribution 

•	 eigenvalues show rapid mixing: after t steps, r.p.d at most


1

(1 − )t 

1017n19 

• eigenvalues small because body convex: no bottlenecks. 

Observations: 

•	 Key idea of self reducibility: compare size of sequence of “related” shapes, then tele­
scope ratios. 

•	 Sizes compared by sampling 

•	 Sample by markov chain


wait: markov chain not exact?
• 

•	 doesn’t matter: just get accurate to within (1 − 1/poly) in each step, product of errors 
still tiny. 

Application: Permanent 

Counting perfect matchings 

•	 Choose random n-edge set 

•	 check if matching 

•	 problem: rare event 

• to solve, need sample space where matchings are dense 

Idea: self reducibility by adding an edge (till reach complete graph) 

•	 problem: don’t know how to generate random matching 
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Different idea: ratio of k-edge to k − 1-edge matchings 

•	 telescope down to 1-edge matchings (self reduction) 

•	 in dense graphs (degree n/2), ratio is at most m3 . 

•	 map each k edge matching by removing an edge: n2 to 1 

•	 map each k − 1 edge matching to k-edge matching by augmenting path of length at 
most 3. 

–	 take unmatched u and v 

–	 if unmatched neighbor of u or v, done 

–	 by u and v have n/2 neighbors, so if all matched, some neighbor b of u matched 
to some neighbor a of v. 

– so each size k matching “receives” at most m3 size k − 1 matchings. 

Generate via random walk 

•	 based on using uniform generation to do sampling. 

•	 applies to minimum degree n/2 

•	 Let Mk be k-edge matchings, �Mk � = mk 

•	 algorithm estimates all ratios mk/mk−1, multiplies 

•	 claim: ratio mk+1/mk polynomially bounded (dense). 

•	 deduce sufficient to generate randomly from Mk ∪ Mk−1, test frequency of mk 

•	 do so by random walk of local moves: 

–	 with probability 1/2. stay still 

–	 else Pick random edge e 

–	 if in Mk and e matched, remove 

–	 if in Mk−1 end e can be added, add. 

–	 if in Mk , e = (u, v), u matched to w and v unmatched, then match u to w. 

–	 else do nothing 

–	 Note that exactly one applies 

•	 Matrix is symmetric (undirected), so double stochastic, so stationary distribution is 
uniform as desired. 

•	 In text, prove λ2 = 1 − 1/nO(1) on an n vertex graph (by proving expansion property) 

•	 so within nO(1) steps, rpd is polynomially small 

• so can pretend stationary 

Recently, extended to non-dense case. 
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Coupling: 

Method 

•	 Run two copies of Markov chain Xt, Yt 

•	 Each considered in isolation is a copy of MC (that is, both have MC distribution) 

•	 but they are not independent: they make dependent choices at each step 

•	 in fact, after a while they are almost certainly the same 

•	 Start Yt in stationary distribution, Xt anywhere 

•	 Coupling argument: 

Pr[Xt = j] = Pr[Xt = j | Xt = Yt] Pr[Xt = Yt] + Pr[Xt = j Xt = Yt] Pr[Xt = Yt] 

= Pr[Yt = j] Pr[Xt = Yt] + � Pr[Xt = j | Xt = Yt] 

So just need to make � (which is r.p.d.) small enough. 

n-bit Hypercube walk: at each step, flip random bit to random value 

•	 At step t, pick a random bit b, random value v


both chains set but b to value v
• 

• after O(n log n) steps, probably all bits matched. 

Counting k colorings when k > 2Δ + 1 

•	 The reduction from (approximate) uniform generation 

–	 compute ratio of coloring of G to coloring of G− e 

–	 Recurse counting G− e colorings 

–	 Base case kn colorings of empty graph 

•	 Bounding the ratio: 

–	 note G− e colorings outnumber G colorings 

–	 By how much? Let L colorings in difference (u and v same color) 

–	 to make an L coloring a G coloring, change u to one of k− Δ = Δ + 1 legal colors 

–	 Each G-coloring arises at most one way from this 

–	 So each L coloring has at least Δ + 1 neighbors unique to them 

–	 So L is 1/(Δ + 1) fraction of G. 

– So can estimate ratio with few samples


The chain:
• 
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–	 Pick random vertex, random color, try to recolor 

–	 loops, so aperiodic 

–	 Chain is time-reversible, so uniform distribution. 

•	 Coupling: 

–	 choose random vertex v (same for both) 

–	 based on Xt and Yt, choose bijection of colors 

–	 choose random color c 

–	 apply c to v in Xt (if can), g(c) to v in Yt (if can). 

–	 What bijection? 

∗	 Let A be vertices that agree in color, D that disagree. 

∗	 if v ∈ D, let g be identity 

∗	 if v ∈ A, let N be neighbors of v 

∗	 let CX be colors that N has in X but not Y (X can’t use them at v) 

∗	 let CY similar, wlog larger than CX 

∗	 g should swap each CX with some CY , leave other colors fixed. Result: if 
X doesn’t change, Y doesn’t 

•	 Convergence: 

–	 Let d�(v) be number of neighbors of v in opposite set, so 

d�(v) = d�(v) = m� 

v∈A v∈D 

–	 Let δ = |D| 
–	 Note at each step, δ changes by 0, ±1 

–	 When does it increase? 

v must be in A, but move to D∗ 

∗	 happens if only one MC accepts new color 

∗	 If c not in CX or CY , then g(c) = c and both change 

∗	 If c ∈ CX , then g(c) ∈ CY so neither moves 

∗	 So must have c ∈ CY 

∗	 But |CY 
�(v), so probability this happens is | ≤ d � 1 d�(v) m� 

= 
n 
· 

k kn 
v∈A 

–	 When does it decrease? 

∗	 must have v ∈ D, only one moves 
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∗ sufficient that pick color not in either neighborhood of v, 

∗ total neighborhood size 2Δ, but that counts the d�(v) elements of A twice. 

∗	 so Prob. � 1 k − (2Δ − d�(v)) k − 2Δ m� 
= δ + 

n 
· 

k kn kn 
v∈D 

– Deduce that expected change in δ is difference of above, namely 

k − 2Δ 
δ = −aδ. − 

kn 

– So after t steps, E[δt] ≤ (1 − a)tδ0 ≤ (1 − a)tn. 

– Thus, probability δ > 0 at most (1 − a)tn. 

– But now note a > 1/n2, so n2 log n steps reduce to one over polynomial chance. 

Note: couple depends on state, but who cares 

• From worm’s eye view, each chain is random walk 

• so, all arguments hold 

Counting vs. generating: 

• we showed that by generating, can count 

• by counting, can generate: 
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