Markov Chains

Markov chains:

Powerful tool for sampling from complicated distributions
rely only on local moves to explore state space.
Many use Markov chains to model events that arise in nature.

We create Markov chains to explore and sample from problems.

2SAT:

Fix some assignment A

let f(k) be expected time to get all n variables to match A if n currently match.
Then f(n) =0, f(0) =1+ f(1), and f(k) =1+ 3(f(k+1)+ f(k—1).

Rewrite: f(0) — f(1) =1and f(k) — f(k+1) =2+ f(k—1) — f(k)

So f(k)— f(k+1)=2k+1

deduce f(0) =1+3+---+(2n—1) =n?

so, find with probability 1/2 in 2n? time.

With high probability, find in O(n?logn) time.

More general formulation: Markov chain

State space S

markov chain begins in a start state Xy, moves from state to state, so output of chain
is a sequence of states Xg, X1,... = {Xi}2,

movement controlled by matrix of transition probabilities p;; = probability next state
will be j given current is 7.

thus, >, pij =1 for every i € S
implicit in definition is memorylessness property:

PI‘[XH_l :j | XO = io,Xl = il,... 7Xt = ’L] = Pr[Xt+1 :j | Xt = l] :pZJ
Initial state Xy can come from any probability distribution, or might be fixed (trivial
prob. dist.)

Dist for X, leads to dist over sequences {X;}

Suppose X; has distribution ¢ (vector, g; is prob. of state i). Then X;,; has dist ¢P.
Why?



e Observe Pr[X; , = j | X; = i] = P}
Graph of MC:
e Vertex for every state

Edge (i, j) if py; > 0
Edge weight p;;
weighted outdegree 1

Possible state sequences are paths through the graph

Stationary distribution:

a 7 such that 7P =7
left eigenvector, eigenvalue 1
steady state behavior of chain: if in stationary, stay there.

note stationary distribution is a sample from state space, so if can get right stationary
distribution, can sample

lots of chains have them.

to say which, need definitions.

Things to rule out:

infinite directed line (no stationary)
2-cycle (no stationary)

disconnected graph (multiple)

Irreducibility

any state can each any other state
i.e. path between any two states

i.e. single strong component in graph

Persistence /Transience:

TS-) is probability first hit state j at ¢, given start state <.
fi; is probability eventually reach j from i, so rg)

expected time to reach is hitting time h;; =) tfr’gi)



o If f;; <1 then h;; = oo since might never reach. Converse not always true.

o If f;; < 1, state is transient. Else persistent. If hy;; = oo, null persistent.
Persistence in finite graphs:

e graph has strong components

e final strong component has no outgoing edges

e Nonfinal components:

— once leave nonfinal component, cannot return
— if nonfinal, nonzero probability of leaving in n steps.
— so guaranteed to leave eventually

— 80, vertices in nonfinal components are transient
e Final components

— if final, will stay in that component

— If two vertices in same strong component, have path between them
— so nonzero probability of reaching in (say) n steps.

— S0, vertices in final components are persistent

— geometric distribution on time to reach, so expected time finite. Not null-persistent
Conclusion:

— In finite chain, no null-persistent states

— In finite irreducible chain, all states non-null persistent (no transient states)
Periodicity:

e Periodicity of a state is max T such that some state only has nonzero probability at
times a + T for integer ¢

Chain periodic if some state has periodicity > 1

In graph, all cycles containing state have length multiple of T’

Easy to eliminate: add self loops
e slows down chain, otherwise same
Ergodic:
e aperiodic and non-null persistent

e means might be in state at any time in (sufficiently far) future



Fundamental Theorem of Markov chains: Any irreducible, finite, aperiodic Markov chain
satisfies:

e All states ergodic (reachable at any time in future)

e unique stationary distribution 7, with all m; > 0

e fi=1and h;; =1/m;

e number of times visit ¢ in ¢t steps approaches t7; in limit of ¢.

Justify all except uniqueness here.

Finite irreducible aperiodic implies ergodic (since finite irreducible implies non-null persis-
tent)

Intuitions for quantities:

e h;; is expected return time
e So hit every 1/h;; steps on average
e So h” = ]_/71'Z

e If in stationary dist, t7; visits follows from linearity of expectation

Random walks on undirected graphs:

e general Markov chains are directed graphs. But undirected have some very nice prop-
erties.

e take a connected, non-bipartite undirected graph on n vertices
e states are vertices.
e move to uniformly chosen neighber.
® S0 puy = 1/d(u) for every neighbor v
e stationary distribution: m, = d(v)/2m
e ungiqueness says this is only one
e deduce h,, = 2m/d(v)
Definitions:
e Hitting time h,, is expected time to reach u from v
e commute time is hy, + Ay,
e C,(G) is expected time to visit all vertices of G, starting at u

e cover time is max, C,(G) (so in fact is max over any starting distribution).
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e let’s analyze max cover time
Examples:
e clique: commute time n, cover time ©(nlogn)
e line: commute time between ends is ©(n?)
e lollipop: h,, = ©(n?) while h,, = ©(n?) (big difference!)

e also note: lollipop has edges added to line, but higher cover time: adding edges can
increase cover time even though improves connectivity.

general graphs: adjacent vertices:
e lemma: for adjcaent (u,v), hyy + hypy < 2m
e proof: new markov chain on edge traversed following vertex MC

— transition matrix is doubly stochastic: column sums are 1 (exactly d(v) edges can
transit to edge (v, w), each does so with probability 1/d(v))

— In homework, show such matrices have uniform stationary distribution.

— Deduce . = 1/2m. Thus he. = 2m.
e So consider suppose original chain on vertex v.

— suppose arrived via (u,v)

— expected to traverse (u,v) again in 2m steps

at this point will have commuted u to v and back.

— so conditioning on arrival method, commute time 2m (thanks to memorylessness)

General graph cover time:

e theorem: cover time O(mn)

e proof: find a spanning tree

e consider a dfs of tree-crosses each edge once in each direction, gives order vy, ... ,v9, 1

e time for the vertices to be visited in this order is upper bounded by commute time

e but vertices adjacent, so commute times O(m)

e total time O(mn)

e tight for lollipop, loose for line.
Tighter analysis:

e analogue with electrical networks



Assume unit edge resistance
Kirchoff’s law: current (rate of transitions) conservation
Ohm’s law

Gives effective resistance R, between two vertices.

e Theorem: C,, = 2mR,,

e (tightens previous theorem, since R,, < 1)

e Proof:

Suppose put d(x) amperes into every z, remove 2m from v

®uy voltage at u with respect to v

Ohm: Current from u to w i ¢uy — Puw

Kirchoff: d(u) = ZweN(u) currents = ZweN(u) Guv — O = A(W)Duy — D P
Also, hyy = D (1/d(w)) (1 + huw)

same soln to both linear equations, so ¢y, = hys

By same arg, h,, is voltage at v wrt w, if insert 2m at u and remove d(z) from
every

add linear systems, find h,, + h,, is voltage difference when insert 2m at u and
remove at v.

now apply ohm.



