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Markov Chains 

Markov chains: 

•	 Powerful tool for sampling from complicated distributions 

•	 rely only on local moves to explore state space. 

•	 Many use Markov chains to model events that arise in nature. 

• We create Markov chains to explore and sample from problems. 

2SAT: 

•	 Fix some assignment A 

•	 let f(k) be expected time to get all n variables to match A if n currently match. 

•	 Then f(n) = 0, f(0) = 1 + f(1), and f(k) = 1 + 1 
2 (f(k + 1) + f(k − 1). 

•	 Rewrite: f(0) − f(1) = 1 and f(k) − f(k + 1) = 2 + f(k − 1) − f(k) 

•	 So f(k) − f(k + 1) = 2k + 1 

•	 deduce f(0) = 1 + 3 + · · ·+ (2n− 1) = n2 

•	 so, find with probability 1/2 in 2n2 time. 

• With high probability, find in O(n2 log n) time. 

More general formulation: Markov chain 

•	 State space S 

•	 markov chain begins in a start state X0, moves from state to state, so output of chain 
is a sequence of states X0, X1, . . . = {Xt}∞t=0 

•	 movement controlled by matrix of transition probabilities pij = probability next state 
will be j given current is i. 

•	 thus, j pij = 1 for every i ∈ S 

•	 implicit in definition is memorylessness property: 

Pr[Xt+1 = j | X0 = i0, X1 = i1, . . . , Xt = i] = Pr[Xt+1 = j Xt = i] = pij .| 

•	 Initial state X0 can come from any probability distribution, or might be fixed (trivial 
prob. dist.) 

•	 Dist for X0 leads to dist over sequences {Xt} 

•	 Suppose Xt has distribution q (vector, qi is prob. of state i). Then Xt+1 has dist qP . 
Why? 
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•	 Observe Pr[Xt+r = j | Xt = i] = P r 
ij 

Graph of MC: 

•	 Vertex for every state 

•	 Edge (i, j) if pij > 0 

•	 Edge weight pij 

•	 weighted outdegree 1 

•	 Possible state sequences are paths through the graph 

Stationary distribution: 

a π such that πP = π• 

•	 left eigenvector, eigenvalue 1 

•	 steady state behavior of chain: if in stationary, stay there. 

•	 note stationary distribution is a sample from state space, so if can get right stationary 
distribution, can sample 

lots of chains have them. • 

• to say which, need definitions. 

Things to rule out: 

•	 infinite directed line (no stationary) 

•	 2-cycle (no stationary) 

• disconnected graph (multiple) 

Irreducibility 

•	 any state can each any other state 

•	 i.e. path between any two states 

• i.e. single strong component in graph 

Persistence/Transience: 

(t) • is probability first hit state j at t, given start state i.rij 

•	 fij is probability eventually reach j from i, so 
� 

r
(t) 
ij � (t) •	 expected time to reach is hitting time hij = trij 
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•	 If fij < 1 then hij = ∞ since might never reach. Converse not always true. 

• If fii < 1, state is transient. Else persistent. If hii = ∞, null persistent. 

Persistence in finite graphs: 

•	 graph has strong components 

•	 final strong component has no outgoing edges 

•	 Nonfinal components:


– once leave nonfinal component, cannot return


–	 if nonfinal, nonzero probability of leaving in n steps. 

–	 so guaranteed to leave eventually 

–	 so, vertices in nonfinal components are transient 

•	 Final components 

–	 if final, will stay in that component 

–	 If two vertices in same strong component, have path between them 

–	 so nonzero probability of reaching in (say) n steps. 

–	 so, vertices in final components are persistent 

– geometric distribution on time to reach, so expected time finite. Not null-persistent 

Conclusion: 

–	 In finite chain, no null-persistent states 

– In finite irreducible chain, all states non-null persistent (no transient states) 

Periodicity: 

•	 Periodicity of a state is max T such that some state only has nonzero probability at 
times a + Ti for integer i 

•	 Chain periodic if some state has periodicity > 1 

•	 In graph, all cycles containing state have length multiple of T 

•	 Easy to eliminate: add self loops 

• slows down chain, otherwise same 

Ergodic: 

•	 aperiodic and non-null persistent 

•	 means might be in state at any time in (sufficiently far) future 
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Fundamental Theorem of Markov chains: Any irreducible, finite, aperiodic Markov chain 
satisfies: 

•	 All states ergodic (reachable at any time in future) 

•	 unique stationary distribution π, with all πi > 0 

•	 fii = 1 and hii = 1/πi 

•	 number of times visit i in t steps approaches tπi in limit of t. 

Justify all except uniqueness here.

Finite irreducible aperiodic implies ergodic (since finite irreducible implies non-null persis­

tent)

Intuitions for quantities:


•	 hii is expected return time 

•	 So hit every 1/hii steps on average 

•	 So hii = 1/πi 

•	 If in stationary dist, tπi visits follows from linearity of expectation 

Random walks on undirected graphs: 

•	 general Markov chains are directed graphs. But undirected have some very nice prop­
erties. 

•	 take a connected, non-bipartite undirected graph on n vertices


states are vertices.
• 

•	 move to uniformly chosen neighber. 

•	 So puv = 1/d(u) for every neighbor v 

•	 stationary distribution: πv = d(v)/2m 

•	 unqiqueness says this is only one 

•	 deduce hvv = 2m/d(v) 

Definitions: 

•	 Hitting time huv is expected time to reach u from v 

•	 commute time is huv + hvu 

•	 Cu(G) is expected time to visit all vertices of G, starting at u 

•	 cover time is maxu Cu(G) (so in fact is max over any starting distribution). 
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• let’s analyze max cover time 

Examples: 

•	 clique: commute time n, cover time Θ(n log n) 

•	 line: commute time between ends is Θ(n2) 

•	 lollipop: huv = Θ(n3) while hvu = Θ(n2) (big difference!) 

•	 also note: lollipop has edges added to line, but higher cover time: adding edges can 
increase cover time even though improves connectivity. 

general graphs: adjacent vertices: 

•	 lemma: for adjcaent (u, v), huv + hvu ≤ 2m 

•	 proof: new markov chain on edge traversed following vertex MC 

–	 transition matrix is doubly stochastic: column sums are 1 (exactly d(v) edges can 
transit to edge (v, w), each does so with probability 1/d(v)) 

–	 In homework, show such matrices have uniform stationary distribution. 

–	 Deduce πe = 1/2m. Thus hee = 2m. 

•	 So consider suppose original chain on vertex v. 

–	 suppose arrived via (u, v) 

–	 expected to traverse (u, v) again in 2m steps 

–	 at this point will have commuted u to v and back. 

– so conditioning on arrival method, commute time 2m (thanks to memorylessness) 

General graph cover time: 

•	 theorem: cover time O(mn) 

•	 proof: find a spanning tree 

•	 consider a dfs of tree-crosses each edge once in each direction, gives order v1, . . . , v2n−1 

•	 time for the vertices to be visited in this order is upper bounded by commute time 

•	 but vertices adjacent, so commute times O(m) 

•	 total time O(mn) 

• tight for lollipop, loose for line. 

Tighter analysis: 

•	 analogue with electrical networks 
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–	 Assume unit edge resistance 

–	 Kirchoff’s law: current (rate of transitions) conservation 

–	 Ohm’s law 

–	 Gives effective resistance Ruv between two vertices. 

•	 Theorem: Cuv = 2mRuv 

•	 (tightens previous theorem, since Ruv ≤ 1) 

Proof: • 

–	 Suppose put d(x) amperes into every x, remove 2m from v 

–	 φuv voltage at u with respect to v 

–	 Ohm: Current from u to w is φuv − φwv 

– Kirchoff: d(u) = w∈N (u) currents = w∈N (u) φuv − φwv = d(u)φuv − φwv 

–	 Also, huv = (1/d(u))(1 + hwv ) 

–	 same soln to both linear equations, so φuv = huv 

–	 By same arg, hvu is voltage at v wrt u, if insert 2m at u and remove d(x) from 
every x 

–	 add linear systems, find huv + hvu is voltage difference when insert 2m at u and 
remove at v. 

–	 now apply ohm. 

6 


