
possibly no class monday. 

Linear programming. 

definitions:• 

–	 hyperplanes H 

– basis B(H) of hyperplanes that define optimum


– optimum value O(H)


Random sampling algorithm 

•	 Goal: find B(H) 

•	 Plan: random sample 

–	 solve random subproblem 

–	 keep only violating constraints V 

–	 recurse on leftover 

•	 problem: violators may not contain all of B(H) 

•	 bf BUT, contain some of B(H)


– opt of sample better than opt of whole


–	 but any point feasible for B(H) no better than O(H) 

–	 so current opt not feasible for B(H) 

– so some B(H) violated 

Key Lemma: 

•	 suppose H − S = m.| | 

•	 sample R of size r from H − S 

• then expected violators d(m − r − 1)/(r − d) 

Result: 

•	 saw sampling LP that ran in time O((log n)O(log d) + d2n log n + dO(d) 

•	 key idea: if pick r random hyperplanes and solve, expect only dm/r violating hyper­
planes. 
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Iterative Reweighting 

Get rid of recursion and highest order term. 

• idea: be “softer” regarding mistakes 

• plane in V gives “evidence” it’s in B(H) 

• Algorithm: 

– give each plane weight one 

– pick 9d2 planes with prob. proportional to weights 

– find optimum of R 

– find violators of R 

– if 

wh ≤ (2 wh)/(9d − 1) 
h∈V h∈H 

then double violator weights 

– repeat till no violators 

• Analysis 

– show weight of basis grows till rest is negligible. 

– claim O(d log n) iterations suffice. 

– claim iter successful with prob. 1/2 

– deduce runtime O(d2n log n) + dd/2+O(1) log n. 

– proof of claim: 

∗ after each iter, double weight of some basis element 

∗ after kd iterations, basis weight at least d2k 

∗ total weight increase at most (1 + 2/(9d − 1))kd ≤ n exp(2kd/(9d − 1)) 

– after d log n iterations, done. 

• so runtime O(d2n log n) + dO(d) log n 

• Can improve to linear in n 

DNF counting 

Define 

m clauses• 

Complexity: 
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• �P-complete. 

• Define PRAS, FPRAS 

Rare events 

• Idea: choose random assignment, count satisfying fraction 

• if p small, huge sample size 

• importance sampling biases samples toward event. 

Coverage algorithm 

• given m sets Ai ⊆ V , count ∪Ai 

• problem: random a ∈ V too rarely satisfies 

• Idea: Bias sample to create better odds of interesting event 

– work in �Ai 

– size n known 

– can sample uniformly from it 

– dense subset of right size 

– “canonical” assignment is “first” copy of assignment for given clause 

– canonical items number same as ∪Ai 

• Analysis 

– assignment a, satisfies sa clauses. 

– a(sa/n)(1/sa) = m/n 

– We know n, so can deduce m 

–	 How many trials needed? Till get O(µ�δ ) success

˜
– prob. OK at least 1/m, so O(m) trials suff. 

• unbiased estimator (expectation equals correct value) 

Network Reliability 
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