
possibly no class monday.

Linear programming.

definitions:•

–	 hyperplanes H

– basis B(H) of hyperplanes that define optimum

– optimum value O(H)

Random sampling algorithm

•	 Goal: find B(H)

•	 Plan: random sample

–	 solve random subproblem

–	 keep only violating constraints V

–	 recurse on leftover

•	 problem: violators may not contain all of B(H)

•	 bf BUT, contain some of B(H)

– opt of sample better than opt of whole

–	 but any point feasible for B(H) no better than O(H)

–	 so current opt not feasible for B(H)

– so some B(H) violated

Key Lemma:

•	 suppose H − S = m.| |

•	 sample R of size r from H − S

• then expected violators d(m − r − 1)/(r − d)

Result:

•	 saw sampling LP that ran in time O((log n)O(log d) + d2n log n + dO(d)

•	 key idea: if pick r random hyperplanes and solve, expect only dm/r violating hyper­
planes.

1

� �

Iterative Reweighting

Get rid of recursion and highest order term.

• idea: be “softer” regarding mistakes

• plane in V gives “evidence” it’s in B(H)

• Algorithm:

– give each plane weight one

– pick 9d2 planes with prob. proportional to weights

– find optimum of R

– find violators of R

– if

wh ≤ (2 wh)/(9d − 1)
h∈V h∈H

then double violator weights

– repeat till no violators

• Analysis

– show weight of basis grows till rest is negligible.

– claim O(d log n) iterations suffice.

– claim iter successful with prob. 1/2

– deduce runtime O(d2n log n) + dd/2+O(1) log n.

– proof of claim:

∗ after each iter, double weight of some basis element

∗ after kd iterations, basis weight at least d2k

∗ total weight increase at most (1 + 2/(9d − 1))kd ≤ n exp(2kd/(9d − 1))

– after d log n iterations, done.

• so runtime O(d2n log n) + dO(d) log n

• Can improve to linear in n

DNF counting

Define

m clauses•

Complexity:

2

�

• �P-complete.

• Define PRAS, FPRAS

Rare events

• Idea: choose random assignment, count satisfying fraction

• if p small, huge sample size

• importance sampling biases samples toward event.

Coverage algorithm

• given m sets Ai ⊆ V , count ∪Ai

• problem: random a ∈ V too rarely satisfies

• Idea: Bias sample to create better odds of interesting event

– work in �Ai

– size n known

– can sample uniformly from it

– dense subset of right size

– “canonical” assignment is “first” copy of assignment for given clause

– canonical items number same as ∪Ai

• Analysis

– assignment a, satisfies sa clauses.

– a(sa/n)(1/sa) = m/n

– We know n, so can deduce m

–	 How many trials needed? Till get O(µ�δ) success

˜
– prob. OK at least 1/m, so O(m) trials suff.

• unbiased estimator (expectation equals correct value)

Network Reliability

3

