Linear programming.
e define
e assumptions:

— nonempty, bounded polyhedron
— minimizing x;
— unique minimum, at a vertex

— exactly d constraints per vertex

definitions:

— hyperplanes H
— basis B(H) of hyperplanes that define optimum
— optimum value O(H)

Simplex

— exhaustive polytope search:
— walks on vertices
— runs in O(n!%?1) time in theory

— often great in practice

polytime algorithms exist (ellipsoid)

but bit-dependent (weakly polynomial)!
e OPEN: strongly polynomial LP

e goal today: polynomial algorithms for small d

Random sampling algorithm
e Goal: find B(H)
e Plan: random sample

— solve random subproblem
— keep only violating constraints V'

— recurse on leftover
e problem: violators may not contain all of B(H)
e bf BUT, contain some of B(H)

— opt of sample better than opt of whole

— but any point feasible for B(H) no better than O(H)
— so current opt not feasible for B(H)
— so some B(H) violated

e revised plan:

— random sample
— discard useless planes, add violators to “active set”
— repeat sample on whole problem while keeping active set

— claim: add one B(H) per iteration

e Algorithm SampLP:

set S of “active” hyperplanes.

if n < 9d? do simplex (d%/2+00)

— pick R C H — S of size dy/n

— x < SampLP(RUS)

— V « hyperplanes of H that violate x
— if V< 2y/n, add to S

e Runtime analysis:

— mean size of V at most \/n

— each iteration adds to S with prob. 1/2.

— each successful iteration adds a B(H) to S

— deduce expect 2d iterations.

— O(dn) per phase needed to check violating constraints: O(d?n) total

— recursion size at most 2d/n
T(n) < 2dT(2dv/n) + O(d*n) = O(d*nlogn) + (logn)°Ued
(Note valid use of linearity of expectation)
Must prove claim, that mean V' < /n.
e Lemma:

— suppose |H — S| =m.
— sample R of size r from H — S

— then expected violators d(m —r —1)/(r — d)

e book broken: only works for empty S

Let Cy be set of optima of subsets TU S, T C H

Let Cgr be set of optima of subsets T U S, T C R

note Cr C Cy, and O(R U S) is only point violating no constraints of R

Let v, be number of constraints in H violated by x € Cy,

Let 7, indicate z = OPT(R U S)

E[V]] = E[_ v
=) 0. Prliy]

decide Pr[uv,]

- (T) equally likely subsets.
— how many have optimum x?

— let ¢, be number of planes defining x not already in S

must choose ¢, planes to define x

— all others choices must avoid planes violating x. prob.
m — Uy —qy / m o (m_va:_Q:c)_(r_Qx)—‘f_l M — Uz — (g / m
T —dqx r B r—4qx T_Q:v_l r

SR CilE

m-—r+1 m — Uy — Qg m
P
Elv] < r—d Uw(r—q$—1>/(r)

— summand is prob that x is a point that violates exactly one constraint in r.

IN

deduce

* must pick g, constraints defining x
* must pick r — ¢, — 1 constraints from m — v, — ¢, nonviolators

* must pick one of v, violators

therefore, sum is expected number of points that violate exactly one constraint in

R.

— but this is only d (one for each constraint in basis of R)
Result:
e saw sampling LP that ran in time O((logn)?18% + d?nlogn + d°@

e key idea: if pick r random hyperplanes and solve, expect only dm/r violating hyper-
planes.

Iterative Reweighting

Get rid of recursion and highest order term.

e idea: be “softer” regarding mistakes

e plane in V gives “evidence” it’s in B(H)

e Algorithm:
— give each plane weight one
— pick 9d? planes with prob. proportional to weights
— find optimum of R

— find violators of R

— if
D wn < (2) wy)/(9d - 1)
heV heH

then double violator weights

— repeat till no violators
e Analysis

— show weight of basis grows till rest is negligible.
— claim O(dlogn) iterations suffice.

— claim iter successful with prob. 1/2

— deduce runtime O(d?*nlogn) + d¥?**°W log n.

— proof of claim:

x after each iter, double weight of some basis element
* after kd iterations, basis weight at least d2*
* total weight increase at most (1 +2/(9d — 1))k < nexp(2kd/(9d — 1))

— after dlogn iterations, done.
e so runtime O(d?nlogn) + d°@ logn

e Can improve to linear in n

DNF counting

Rare events
e if p small, huge sample size

e importance sampling biases samples toward event.

4

Complexity:
e #P-complete.
e PRAS, FPRAS
Coverage algorithm
e given A; C V, count UA;
e problem: random a € V too rarely satisfies
e Idea: Bias sample to create better odds of interesting event

— work in WA;

— size known

— can sample uniformly

— dense subset of right size

— “cannonical” assignment is “minimum” copy of assignment for given clause

— canonical items number same as UA;
e Analysis

— assignment a, satisfies s, clauses.

= 22a(8a/)(1/54)

— prob. OK at least 1/m, so m trials suff.

e unbiased estimator (expectation equals correct value)

Network Reliability

