
Linear programming.

define•

• assumptions:

– nonempty, bounded polyhedron

– minimizing x1

– unique minimum, at a vertex

– exactly d constraints per vertex

definitions:
•

– hyperplanes H

– basis B(H) of hyperplanes that define optimum

– optimum value O(H)

• Simplex

– exhaustive polytope search:

– walks on vertices

– runs in O(n�d/2�) time in theory

– often great in practice

• polytime algorithms exist (ellipsoid)

• but bit-dependent (weakly polynomial)!

• OPEN: strongly polynomial LP

• goal today: polynomial algorithms for small d

Random sampling algorithm

• Goal: find B(H)

• Plan: random sample

– solve random subproblem

– keep only violating constraints V

– recurse on leftover

• problem: violators may not contain all of B(H)

•	 bf BUT, contain some of B(H)

– opt of sample better than opt of whole

1

– but any point feasible for B(H) no better than O(H)

– so current opt not feasible for B(H)

– so some B(H) violated

• revised plan:

– random sample

– discard useless planes, add violators to “active set”

– repeat sample on whole problem while keeping active set

– claim: add one B(H) per iteration

• Algorithm SampLP:

– set S of “active” hyperplanes.

– if n < 9d2 do simplex (dd/2+O(1))

– pick R ⊆ H − S of size d
√

n

– x ← SampLP(R ∪ S)

– V ← hyperplanes of H that violate x

– if V ≤ 2
√

n, add to S

• Runtime analysis:

– mean size of V at most
√

n

– each iteration adds to S with prob. 1/2.

– each successful iteration adds a B(H) to S

– deduce expect 2d iterations.

– O(dn) per phase needed to check violating constraints: O(d2n) total

– recursion size at most 2d
√

n

T (n) ≤ 2dT (2d
√

n) + O(d2 n) = O(d2

(Note valid use of linearity of expectation)

Must prove claim, that mean V ≤
√

n.

Lemma:•

– suppose H − S = m.| |
– sample R of size r from H − S

– then expected violators d(m − r − 1)/(r − d)

• book broken: only works for empty S

2

n log n) + (log n)O(log d)

�

�

�	 �

� � � �	 � � � �

� � � �

� � � �

•	 Let CH be set of optima of subsets T ∪ S, T ⊆ H

•	 Let CR be set of optima of subsets T ∪ S, T ⊆ R

•	 note CR ⊆ CH , and O(R ∪ S) is only point violating no constraints of R

•	 Let vx be number of constraints in H violated by x ∈ CH ,

•	 Let ix indicate x = OP T (R ∪ S)

E[|V] = E[vxix]|

= vx Pr[ix]

•	 decide Pr[vx]

m – equally likely subsets.
r

–	 how many have optimum x?

–	 let qx be number of planes defining x not already in S

–	 must choose qx planes to define x

–	 all others choices must avoid planes violating x. prob.

m (m − vx − qx) − (r − qx) + 1 m − vx − qx
/

mm − vx − qx
/ =

r − qx r	 r − qx r − qx − 1 r
(m − r + 1) m − vx − qx

/
m ≤

r − d r − qx − 1 r

–	 deduce

E[V] ≤
m − r + 1 �

vx
m − vx − qx

/
m
rr − d r − qx − 1

–	 summand is prob that x is a point that violates exactly one constraint in r.

∗	 must pick qx constraints defining x

∗	 must pick r − qx − 1 constraints from m − vx − qx nonviolators

∗	 must pick one of vx violators

–	 therefore, sum is expected number of points that violate exactly one constraint in
R.

–	 but this is only d (one for each constraint in basis of R)

Result:

•	 saw sampling LP that ran in time O((log n)O(log d) + d2n log n + dO(d)

•	 key idea: if pick r random hyperplanes and solve, expect only dm/r violating hyper­
planes.

3

� �

Iterative Reweighting

Get rid of recursion and highest order term.

• idea: be “softer” regarding mistakes

• plane in V gives “evidence” it’s in B(H)

• Algorithm:

– give each plane weight one

– pick 9d2 planes with prob. proportional to weights

– find optimum of R

– find violators of R

– if

wh ≤ (2 wh)/(9d − 1)
h∈V h∈H

then double violator weights

– repeat till no violators

• Analysis

– show weight of basis grows till rest is negligible.

– claim O(d log n) iterations suffice.

– claim iter successful with prob. 1/2

– deduce runtime O(d2n log n) + dd/2+O(1) log n.

– proof of claim:

∗ after each iter, double weight of some basis element

∗ after kd iterations, basis weight at least d2k

∗ total weight increase at most (1 + 2/(9d − 1))kd ≤ n exp(2kd/(9d − 1))

– after d log n iterations, done.

• so runtime O(d2n log n) + dO(d) log n

• Can improve to linear in n

DNF counting

Rare events

• if p small, huge sample size

• importance sampling biases samples toward event.

4

�

Complexity:

• �P-complete.

• PRAS, FPRAS

Coverage algorithm

• given Ai ⊆ V , count ∪Ai

• problem: random a ∈ V too rarely satisfies

• Idea: Bias sample to create better odds of interesting event

– work in �Ai

– size known

– can sample uniformly

– dense subset of right size

– “cannonical” assignment is “minimum” copy of assignment for given clause

– canonical items number same as ∪Ai

• Analysis

– assignment a, satisfies sa clauses.

– a(sa/n)(1/sa)

– prob. OK at least 1/m, so m trials suff.

• unbiased estimator (expectation equals correct value)

Network Reliability

5

