
Linear programming. 

define• 

• assumptions: 

– nonempty, bounded polyhedron 

– minimizing x1 

– unique minimum, at a vertex 

– exactly d constraints per vertex


definitions:
• 

– hyperplanes H 

– basis B(H) of hyperplanes that define optimum 

– optimum value O(H) 

• Simplex 

– exhaustive polytope search: 

– walks on vertices 

– runs in O(n�d/2�) time in theory


– often great in practice


• polytime algorithms exist (ellipsoid) 

• but bit-dependent (weakly polynomial)! 

• OPEN: strongly polynomial LP 

• goal today: polynomial algorithms for small d 

Random sampling algorithm 

• Goal: find B(H) 

• Plan: random sample 

– solve random subproblem 

– keep only violating constraints V 

– recurse on leftover 

• problem: violators may not contain all of B(H) 

•	 bf BUT, contain some of B(H)


– opt of sample better than opt of whole
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– but any point feasible for B(H) no better than O(H) 

– so current opt not feasible for B(H) 

– so some B(H) violated 

• revised plan: 

– random sample 

– discard useless planes, add violators to “active set” 

– repeat sample on whole problem while keeping active set 

– claim: add one B(H) per iteration 

• Algorithm SampLP: 

– set S of “active” hyperplanes. 

– if n < 9d2 do simplex (dd/2+O(1)) 

– pick R ⊆ H − S of size d
√

n 

– x ← SampLP(R ∪ S) 

– V ← hyperplanes of H that violate x 

– if V ≤ 2
√

n, add to S 

• Runtime analysis: 

– mean size of V at most 
√

n 

– each iteration adds to S with prob. 1/2. 

– each successful iteration adds a B(H) to S 

– deduce expect 2d iterations. 

– O(dn) per phase needed to check violating constraints: O(d2n) total 

– recursion size at most 2d
√

n 

T (n) ≤ 2dT (2d
√

n) + O(d2 n) = O(d2 

(Note valid use of linearity of expectation) 

Must prove claim, that mean V ≤
√

n. 

Lemma:• 

– suppose H − S = m.| |
– sample R of size r from H − S 

– then expected violators d(m − r − 1)/(r − d) 

• book broken: only works for empty S 
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•	 Let CH be set of optima of subsets T ∪ S, T ⊆ H 

•	 Let CR be set of optima of subsets T ∪ S, T ⊆ R 

•	 note CR ⊆ CH , and O(R ∪ S) is only point violating no constraints of R 

•	 Let vx be number of constraints in H violated by x ∈ CH , 

•	 Let ix indicate x = OP T (R ∪ S) 

E[|V ] = E[ vxix]|

= vx Pr[ix] 

•	 decide Pr[vx] 

m – equally likely subsets. 
r 

–	 how many have optimum x? 

–	 let qx be number of planes defining x not already in S 

–	 must choose qx planes to define x 

–	 all others choices must avoid planes violating x. prob. 

m (m − vx − qx) − (r − qx) + 1 m − vx − qx 
/

mm − vx − qx 
/ = 

r − qx r	 r − qx r − qx − 1 r 
(m − r + 1) m − vx − qx 

/
m ≤ 

r − d r − qx − 1 r 

–	 deduce 

E[V ] ≤ 
m − r + 1 � 

vx 
m − vx − qx 

/
m 
rr − d r − qx − 1 

–	 summand is prob that x is a point that violates exactly one constraint in r. 

∗	 must pick qx constraints defining x 

∗	 must pick r − qx − 1 constraints from m − vx − qx nonviolators 

∗	 must pick one of vx violators 

–	 therefore, sum is expected number of points that violate exactly one constraint in 
R. 

–	 but this is only d (one for each constraint in basis of R) 

Result: 

•	 saw sampling LP that ran in time O((log n)O(log d) + d2n log n + dO(d) 

•	 key idea: if pick r random hyperplanes and solve, expect only dm/r violating hyper­
planes. 
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Iterative Reweighting 

Get rid of recursion and highest order term. 

• idea: be “softer” regarding mistakes 

• plane in V gives “evidence” it’s in B(H) 

• Algorithm: 

– give each plane weight one 

– pick 9d2 planes with prob. proportional to weights 

– find optimum of R 

– find violators of R 

– if 

wh ≤ (2 wh)/(9d − 1) 
h∈V h∈H 

then double violator weights 

– repeat till no violators 

• Analysis 

– show weight of basis grows till rest is negligible. 

– claim O(d log n) iterations suffice. 

– claim iter successful with prob. 1/2 

– deduce runtime O(d2n log n) + dd/2+O(1) log n. 

– proof of claim: 

∗ after each iter, double weight of some basis element 

∗ after kd iterations, basis weight at least d2k 

∗ total weight increase at most (1 + 2/(9d − 1))kd ≤ n exp(2kd/(9d − 1)) 

– after d log n iterations, done. 

• so runtime O(d2n log n) + dO(d) log n 

• Can improve to linear in n 

DNF counting 

Rare events 

• if p small, huge sample size 

• importance sampling biases samples toward event. 
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Complexity: 

• �P-complete. 

• PRAS, FPRAS 

Coverage algorithm 

• given Ai ⊆ V , count ∪Ai 

• problem: random a ∈ V too rarely satisfies 

• Idea: Bias sample to create better odds of interesting event 

– work in �Ai 

– size known 

– can sample uniformly 

– dense subset of right size 

– “cannonical” assignment is “minimum” copy of assignment for given clause 

– canonical items number same as ∪Ai 

• Analysis 

– assignment a, satisfies sa clauses. 

– a(sa/n)(1/sa) 

– prob. OK at least 1/m, so m trials suff. 

• unbiased estimator (expectation equals correct value) 

Network Reliability 

5 


