Polling
Outline

e Set has size u, contains n “special” elements

e goal: count number of special elements

e sample with probability p = c(logn)/e*n

e with high probability, (1 & €)np special elements
e if observe k elements, deduce n € (1 + €)k.

e Problem: what is p?

Related idea: Monte Carlo simulation

Probability space, event A

easy to test for A

goal: estimate p = Pr[A].

Perform n trials (sampling with replacement).

— expected outcome pn.
— estimator = " I;
prob outside € < exp(—e?np/3) (e < 1)

heO (10g21/6)
e°p

for prob. 4, need

e what if p unknown?
e What if p is small?
Handling unknown p
e Sample n times till get p.s = O(logd~'/€?) hits

o w.hp, pe (1Ee)usmn



Transitive closure

Problem outline

e databases want size
e matrix multiply time

e compute reachibility set of each vertex, add
Sampling algorithm

e generate vertex samples until u.6 reachable from v

e deduce size of v's reachibility set.

e rcachability test: O(m).

e number of sample: n/size.

e O(mn) per vertex—ouch!
Pipeline for all vertices simultaneously

e increase mean to O(logn/e?),
e 50 1/n? failure

e O(mn) for all vertices (still ouch).
Avoid wasting work

e after O(nlogn) samples, every vertex has logn hits. No more needed.

e Send at most logn samples over an edge: O(m)

Minimum Cut

deterministic algorithms

o Max-flow

o Gabow
Min-cut implementation

e data structure for contractions
e alternative view—permutations.

e deterministic leaf algo

Recursion:
1,
Pr+1 = Pk — Zpk
Qi = 4/p, +1

Q1 =aqr+1+1/q



Minimum Cut
Min-cut
e saw RCA, O(n?) time

Another candidate: Gabow’s algorithm: O(mc) time on m-edge graph with min-cut ¢

e nice algorithm, if m and ¢ small. But how could we make that happen?

Similarly, for those who know about it, augmenting paths gives O(mwv) for max flow.
Good if m, v small. How make happen?

Sampling! What’s a good sample? (take suggestions, think about them.
e Define G(p)—pick each edge with probability p
Intuition:
e (G has m edges, min-cut ¢
e G(p) hss pm edges, min-cut pc
e So improve Gabow runtime by p? factor!
What goes wrong? (pause for discussion)
e cxpectation isn’t enough
e so what, use chernoff?

— min-cut has c edges
— expect to sample u = pc of them
— chernoff says prob. off by € is at most 2e~<#/4

— so set pc = 8logn or so, deduce with high probability, no min-cut deviates.

(pause for objections)

yes, a problem: exponentially many cuts.

so even though Chernoff gives “exponentially small” bound, accumulation of union
bound means can’t bound probability of small deviation over all cuts.

Surprise! It works anyway.

e Theorem: if min cut ¢ and build G(p), then “min expected cut” is p = pc. Probability
any cut deviates by more than e is O(n%e<#/3).

— So, if get p around 12(logn)/e?, all cuts within € of expectation with high prob-
ability.

— Do so by setting p = 12(logn)/c



Application: min-cut approximation.
Theorem says a min-cut will get value at most (1 4 €)u whp
Also says that any cut of original value (1 + €)c/(1 — €) will get value at most (14 €)u

So, sampled graph has min-cut at most (1 + €)u, and whatever cut is minimum has
value at most (1 + €)c/(1 —€) = (1 + 2¢)c in original graph.

How find min-cut in sample? Gabow’s algorithm
in sample, min-cut O((logn)/e?) whp, while number of edges is O(m(logn)/e*c)
So, Gabow runtime O(m/€%c)

constant factor approx in near linear time.

Proof of Theorem

Suppose min-cut ¢ and build G(p)
Lemma: bound on number of a-minimum cuts is n2®.
— Base on contraction algorithm

So we take as given: number of cuts of value less than ac is at most n?® (this is true,
though probably slightly stronger than what you proved. If use O(n?®), get same result
but messier.

First consider n? smallest cuts. All have expectation at least y, so prob any deviates
is e=<’#/* = 1/n2 by choice of p

Write larger cut values in increasing order cq, . ..
Then c¢,2« > ac

write k = n**, means o, = log k/logn?

What prob ¢, deviates? e €Per/4 = = aun/4

By choice of j, this is k2

sum over k > n?, get O(1/n)



