Polling

Outline

ullet Set has size u, contains n "special" elements

• goal: count number of special elements

• sample with probability $p = c(\log n)/\epsilon^2 n$

• with high probability, $(1 \pm \epsilon)np$ special elements

• if observe k elements, deduce $n \in (1 \pm \epsilon)k$.

• Problem: what is p?

Related idea: Monte Carlo simulation

 \bullet Probability space, event A

 \bullet easy to test for A

• goal: estimate $p = \Pr[A]$.

• Perform n trials (sampling with replacement).

- expected outcome pn.

- estimator $\frac{1}{n} \sum I_i$

– prob outside $\epsilon < \exp(-\epsilon^2 np/3) \ (\epsilon < 1)$

– for prob. δ , need

$$n = O\left(\frac{\log 1/\delta}{\epsilon^2 p}\right)$$

• what if p unknown?

• What if p is small?

Handling unknown p

• Sample *n* times till get $\mu_{\epsilon,\delta} = O(\log \delta^{-1}/\epsilon^2)$ hits

• w.h.p, $p \in (1 \pm \epsilon)\mu_{\epsilon,\delta}n$

Transitive closure

Problem outline

- databases want size
- matrix multiply time
- compute reachibility set of each vertex, add

Sampling algorithm

- generate vertex samples until $\mu_{\epsilon}\delta$ reachable from v
- deduce size of v's reachibility set.
- reachability test: O(m).
- number of sample: n/size.
- O(mn) per vertex—ouch!

Pipeline for all vertices simultaneously

- increase mean to $O(\log n/\epsilon^2)$,
- so $1/n^2$ failure
- O(mn) for all vertices (still ouch).

Avoid wasting work

- after $O(n \log n)$ samples, every vertex has $\log n$ hits. No more needed.
- Send at most $\log n$ samples over an edge: $\tilde{O}(m)$

Minimum Cut

deterministic algorithms

- Max-flow
- Gabow

Min-cut implementation

- data structure for contractions
- ullet alternative view—permutations.
- deterministic leaf algo

Recursion:

$$p_{k+1} = p_k - \frac{1}{4}p_k^2
 q_k = 4/p_k + 1
 q_{k+1} = q_k + 1 + 1/q_k$$

Minimum Cut

Min-cut

- saw RCA, $\tilde{O}(n^2)$ time
- Another candidate: Gabow's algorithm: $\tilde{O}(mc)$ time on m-edge graph with min-cut c
- nice algorithm, if m and c small. But how could we make that happen?
- Similarly, for those who know about it, augmenting paths gives O(mv) for max flow. Good if m, v small. How make happen?
- Sampling! What's a good sample? (take suggestions, think about them.
- Define G(p)—pick each edge with probability p

Intuition:

- G has m edges, min-cut c
- G(p) hss pm edges, min-cut pc
- So improve Gabow runtime by p^2 factor!

What goes wrong? (pause for discussion)

- expectation isn't enough
- so what, use chernoff?
 - min-cut has c edges
 - expect to sample $\mu = pc$ of them
 - chernoff says prob. off by ϵ is at most $2e^{-\epsilon^2\mu/4}$
 - so set $pc = 8 \log n$ or so, deduce with high probability, no min-cut deviates.
- (pause for objections)
- yes, a problem: exponentially many cuts.
- so even though Chernoff gives "exponentially small" bound, accumulation of union bound means can't bound probability of small deviation over all cuts.

Surprise! It works anyway.

- Theorem: if min cut c and build G(p), then "min expected cut" is $\mu = pc$. Probability any cut deviates by more than ϵ is $O(n^2 e^{-\epsilon^2 \mu/3})$.
 - So, if get μ around $12(\log n)/\epsilon^2$, all cuts within ϵ of expectation with high probability.
 - Do so by setting $p = 12(\log n)/c$

- Application: min-cut approximation.
- Theorem says a min-cut will get value at most $(1 + \epsilon)\mu$ whp
- Also says that any cut of original value $(1+\epsilon)c/(1-\epsilon)$ will get value at most $(1+\epsilon)\mu$
- So, sampled graph has min-cut at most $(1 + \epsilon)\mu$, and whatever cut is minimum has value at most $(1 + \epsilon)c/(1 \epsilon) \approx (1 + 2\epsilon)c$ in original graph.
- How find min-cut in sample? Gabow's algorithm
- in sample, min-cut $O((\log n)/\epsilon^2)$ whp, while number of edges is $O(m(\log n)/\epsilon^2c)$
- So, Gabow runtime $\tilde{O}(m/\epsilon^2 c)$
- constant factor approx in near linear time.

Proof of Theorem

- Suppose min-cut c and build G(p)
- Lemma: bound on number of α -minimum cuts is $n^{2\alpha}$.
 - Base on contraction algorithm
- So we take as given: number of cuts of value less than αc is at most $n^{2\alpha}$ (this is true, though probably slightly stronger than what you proved. If use $O(n^{2\alpha})$, get same result but messier.
- First consider n^2 smallest cuts. All have expectation at least μ , so prob any deviates is $e^{-\epsilon^2\mu/4} = 1/n^2$ by choice of μ
- Write larger cut values in increasing order c_1, \ldots
- Then $c_{n^{2\alpha}} > \alpha c$
- write $k = n^{2\alpha}$, means $\alpha_k = \log k / \log n^2$
- What prob c_k deviates? $e^{-\epsilon^2 p c_k/4} = e^{-\epsilon^2 \alpha_k \mu/4}$
- By choice of μ , this is k^{-2}
- sum over $k > n^2$, get O(1/n)