
Maximal independent set 

trivial sequential algorithm 

• inherently sequential 

• from node point of view: each thinks can join MIS if others stay out 

• randomization breaks this symmetry 

Randomized idea 

• each node joins with some probability 

• all neighbors excluded 

• many nodes join 

• few phases needed 

Algorithm: 

• all degree 0 nodes join 

• node v joins with probability 1/2d(v) 

• if edge (u, v) has both ends marked, unmark lower degree vertex 

• put all marked nodes in IS 

• delete all neighbors 

Intuition: d-regular graph 

• vertex vanishes if it or neighbor gets chosen 

• mark with probability 1/2d 

• prob (no neighbor marked) is (1 − 1/2d)d, constant 

• so const prob. of neighbor of v marked—destroys v 

• what about unmarking of v’s neighbor? 

• prob(unmarking forced) only constant as argued above. 

• So just changes constants 

• const fraction of nodes vanish: O(log n) phases 

• Implementing a phase trivial in O(log n). 

Idea of staying marked applies to general case: prob. chosen for IS, given marked, exceeds 
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•	 suppose w marked. only unmarked if higher degree neighbor marked 

• higher degree neighbor marked with prob. ≤ 1/2d(w)


• only d(w) neighbors


• prob. any superior neighbor marked at most 1/2. 

How about prob. neighbor gets marked? 

•	 Define good vertices: at least 1/3 neighbors have lower degree 

•	 Intuition: good means “high degree” 

•	 Prob. lower degree neighbor marked exceeds 1/2d(v) 

•	 prob. no neighbor of good marked ≤ (1 − 1/2d(v))d(v)/3 ≤ e−1/6 . 

•	 So some neighbor marked with prob. 1 − e−1/6 

•	 Stays marked with prob. 1/2 

•	 deduce prob. good vertex killed exceeds (1 − e−1/6)/2 

• Problem: perhaps only one good vertex? 

Good edges 

•	 Idea: since “high degree” vertices killed, means most edges killed 

•	 any edge with a good neighbor 

•	 has const prob. to vanish 

•	 show half edges good 

• deduce O(log n) iterations. 

Proof 

•	 Let VB be bad vertices; we count edges with both ends in VB . 

•	 direct edges from lower to higher degree di is indegree, do outdegree 

•	 if v bad, then di(v) ≤ d(v)/3


deduce
• � 1 � 1 � 
di(v) ≤ d(v) = (di(v) + do(v))

3 3 
VB VB VB 

•	 so di(v) ≤ 1 do(v)VB 2 VB 
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• which means indegree can only “catch” half of outdegree; other half must go to good

vertices. 

• more carefully, 

1 – do(v) − di(v) ≥ 
3 (d(v)) = 1 

3 (do(v) + di(v)). 

– Let VG, VB be good, bad vertices 

– degree of bad vertices is 

2e(VB , VB ) + e(VB , VG) + e(VG, VB ) = do(v) + di(v) 
v∈VB 

3 (do(v) − di(v))≤ 

= 3(e(VB , VG) − e(VG, VB )) 

3(e(VB , VG) + e(VG, VB )≤ 

Deduce e(VB , VB ) ≤ e(VB , VG) + e(VG, VB ). result follows. 

Derandomization: 

• Analysis focuses on edges, 

• so unsurprisingly, pairwise independence sufficient 

• prob vertex marked 1/2d 

• neighbors 1, . . . , d in increasing degree order 

• Let Ei be event that i is marked. 

• Let E � be Ei but no Ej for j < i (makes disjoint events so can add probabilities) i 

• Ai event no neighbor of i chosen 

• Then prob eliminate v at least 

Pr[Ei
� ∩ Ai] = Pr[E �] Pr[Ai | E �]i i

≥ Pr[E �] Pr[Ai]i 

(E � just forces some neighbors not marked so increases bound) i 

• But expected marked neighbors 1/2, so by Markov Pr[Ai] > 1/2 

• so prob eliminate v exceeds Pr[E �] = Pr[∪Ei]i

• lower bound as Pr[Ei] Pr[Ei ∩ Ej ] = 1/2 − d(d− 1)/8d2 > 1/4− 

• so 1/2d prob. v marked but no neighbor marked, so v chosen 

• Wait: show Pr[Ai E �] ≥ Pr[Ai]i| 
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–	 true if independent 

–	 not obvious for pairwise, but again consider d-uniform case 

–	 measure Pr[¬Ai | E �] Pr[Ew | E �] (sum over neighbors w of i)ii	 ≤ 

–	 measure 

Pr[Ew | E �] = 
Pr[Ew ∩ E �] 

i Pr[E �]i
]Pr[(Ew ∩ ¬E1 ∩ · · · ) ∩ Ei

= 
Pr[(¬E1 ∩ · · · ) ∩ Ei] 

Ei] 
= 

Pr[Ew ∩ ¬E1 ∩ · · · |
Ei]Pr[¬E1 ∩ · · · |

Pr[Ew | Ei]≤ 
1 − 

� 
j≤i Pr[Ej Ei]| 

≤ Pr[Ew ] 
1−d(1/2d) 

= 2 Pr[Ew ]) 

(last step assumes d-regular so only d neighbors with odds 1/2d) 

•	 Generate pairwise independent with O(log n) bits 

•	 try all polynomial seeds in parallel


one works
• 

•	 gives deterministic NC algorithm 

with care, O(m) processors and O(log n) time (randomized) 
LFMIS P-complete. 

Project 

Dates 

•	 Classes end 12/13, wednesday 

•	 Final homework due 12/12, tuesday 

• Project due 12/8 (MIT restriction) 

Options 

•	 Reading project 

–	 Read some hard papers 

–	 Write about them more clearly than original 

–	 graded on delta 
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– best source: STOC/FOCS/SODA 

• Implementation project 

– read some randomized algorithms papers, 

– implement 

– develop interesting test sets 

– identify hard cases 

– devise heuristics to improve 

• In your work: 

– use a randomized algorithm in your research; 

– write about it 

MST 

Review Background 

kruskal • 

boruvka • 

verification • 

Intuition: “fences” like selection algorithm. 
sampling theorem: 

• Heavy edges 

• pick F with probability p 

• get n/p F -heavy edges 

Recursive algorithm without boruvka: 

T (m, n) = T (m/2, n) + O(m) + T (2n, n) = O(m + n log n) 

(sloppy on expectation on T(2n,n)) 
Recursive algorithm with 3 boruvka steps: 

T (m, n) = T (m/2, n/8) + c1(m + n) + T (n/4, n/8) 

≤ c(m/2 + n/8) + c1(m + n) + c(n/4 + n/8) 

= (c/2 + c1)m + (c/8 + c1 + c/4 + c/8)n 

= (c/2 + c1)(m + n) 

so set c = 2c1 (not sloppy expectation thanks to linearity). 
Notes: 

• Chazelle m log α(m, n) via relaxed heap 

• Ramachandran and Peti optimal deterministic algorithm (runtime unknown) 

• open questions. 
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Minimum Cut 

deterministic algorithms 

Max-flow • 

Gabow • 

Min-cut implementation 

data structure for contractions • 

• alternative view—permutations. 

• deterministic leaf algo 

Recursion: 

1 2 pk+1 = pk − p
4 k 

qk = 4/pk + 1 

qk+1 = qk + 1 + 1/qk 
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