
Admin

Arora talk.

No class Monday.

Review

Fingerprinting:

Universe of size u•

• Map to random fingerprint in universe of size v ≤ u

• probability of collision 1/v

Freivald’s technique

• verify matrix multiplication AB = C

• check ABr = Cr for random r in {0, 1}n

• probability of success 1/2

• works to check any matrix identity, not just product

• useful if matrices “implicit” like AB

• mapping size-n2 matrices to size-n vectors

In general, many ways to fingerprint explicitly represented objects. But for implicit objects,

different methods have different strengths and weaknesses.

We’ll fingerprint 3 ways:

• vector multiply

• number mod a random prime

• polynomial evaluation at a random point

String matching

Checksums:

• Alice and Bob have bit strings of length n

• Think of n bit integers a, b

• take a prime number p, compare a mod p and b mod p with log p bits.

• trouble if a = b (mod p). How avoid? How likely?

– c = a − b is n-bit integer.

1

–	 so at most n prime factors.

–	 How many prime factors less than k? Θ(k/ ln k)

–	 so take 2n2 log n limit

–	 number of primes about n2

–	 So on random one, 1/n error prob.

–	 O(log n) bits to send.

– implement by add/sub, no mul or div!

How find prime?

–	 Well, a randomly chosen number is prime with prob. 1/ ln n,

–	 so just try a few.

– How know its prime? Simple randomized test (later)

Pattern matching in strings

•	 m-bit pattern

•	 n-bit string

•	 work mod prime p of size at most t

•	 prob. error at particular point most m/(t/ log t) from above

•	 so pick big t, union bound

•	 implement by add/sub as shift in bits

Fingerprints by Polynomials

Good for fingerprinting “composable” data objects.

•	 check if P (x)Q(x) = R(x)

•	 P and Q of degree n (means R of degree at most 2n)

•	 mult in O(n log n) using FFT

•	 evaluation at fixed point in O(n) time

Random test:
•

–	 S ⊆ F

–	 pick random r ∈ S

–	 evaluate P (r)Q(r) − R(r)

–	 suppose this poly not 0

2

| � | |

� �
�

�

– then degree 2n, so at most 2n roots

– thus, prob (discover nonroot) |S|/2n

– so, eg, sufficient to pick random int in [0, 4n]

– Note: no prime needed (but needed for Zp sometimes)

• Again, major benefit if polynomial implicitly specified.

String checksum:

• treat as degree n polynomial

• eval a random O(log n) bit input,

• prob. get 0 small

Multivariate:

n variables •

• degree of term: sum of vars degrees

• total degree d: max degree of term.

•	 Schwartz-Zippel: fix S ⊆ F and let each ri random in S

Pr[Q(ri) = 0 Q = 0] ≤ d/ S

Note: no dependence on number of vars!

Proof:

induction. Base done. •

• Q = 0. So pick some (say) x1 that affects Q

• write Q = i≤k x1
i Qi(x2, . . . , xn) with Qk () = 0 by choice of k

• Qk has total degree at most d− k

• By induction, prob Qk evals to 0 is at most (d− k)/ S| |

• suppose it didn’t. Then q(x) = x1
i Q(r2, . . . , rn) is a nonzero univariate poly.

• by base, prob. eval to 0 is k/|S|

• add: get d/|S|

• why can we add?

Pr[E1] =	 Pr[E1 ∩ E2] + Pr[E1 ∩ E2]

Pr[E1 | E2] + Pr[E2]≤

3

Small problem:

•	 degree n poly can generate huge values from small inputs.

Solution 1:
•

–	 If poly is over Zp, can do all math mod p

–	 Need p exceeding coefficients, degree

– p need not be random

Solution 2:
•

–	 Work in Z, deduce nonzero value from schwartz-zippel

–	 deduce nonzero mod random q (as in string matching)

–	 so do all computation mod random q

–	 q range must exceed bits (not value) of coeff.

Perfect matching

Define•

•	 Edmonds matrix: variable xij if edge (ui, vj)

determinant nonzero if PM
•

•	 poly nonzero symbolically.

–	 so apply Schwartz-Zippel

–	 Degree is n

–	 So number r ∈ (1, . . . , n2) yields 0 with prob. 1/n

Det may be huge!

•	 We picked random input r, knew evaled to nonzero but maybe huge number

n •	 How big? About n!r ,

•	 So only O(n log n + n log r) prime divisors

•	 (or, a string of that many bits)

• So compute mod p, where p is O((n log n + n log r)2)

• only need O(log n + log log r) bits

4

Treaps

Dictionaries for ordered sets

•	 New Operations.

–	 enumerate in order

–	 successor-of, predecessor-of (even if not in set)

– join(S, k, T), split, paste(S, T)

Binary tree.

•	 child and parent pointers

•	 endogenous: leaf nodes empty.

•	 balanced if depth O(log n)

•	 average case.

worst case
•

Tree balancing

rotations•

•	 implementing operations.

•	 red/black, AVL

•	 splay trees.

–	 drawbacks in geometry:

–	 auxiliary structure on nodes in subtree

– rebuild on rotation

Returning to average case:

•	 Assign random “arrival orders” to keys

Build tree as if arrived in that order
•

•	 Average case applies

No rotations on searches
•

Choosing priorities

•	 define arrival by random priorities

•	 assume continuous distribution, fix.

5

• eg, use 2 log n bits, w.h.p. no collisions

Treaps.

•	 tree has keys in heap order of priorities

•	 unique tree given priorities—follows from insertion order

•	 implement insert/delete etc.

• rotations to maintain heap property

Returning to average case:

•	 Assign random “arrival orders” to keys

Build tree as if arrived in that order
•

•	 Average case applies

No rotations on searches
•

Choosing priorities

•	 define arrival by random priorities

•	 assume continuous distribution, fix.

• eg, use 2 log n bits, w.h.p. no collisions

Treaps.

•	 tree has keys in heap order of priorities

•	 unique tree given priorities—follows from insertion order

•	 implement insert/delete etc.

• rotations to maintain heap property

Depth d(x) analysis

•	 Tree is trace of a quicksort

•	 We proved O(log n) w.h.p.

•	 for x rank k, E[d(x)] = Hk + Hn−k+1 − 1

•	 S− = {y ∈ S | y ≤ x}

•	 Qx = ancestors of x

•	 Show E[Q−] = Hk .x

6

�

•
 to show: y ∈ Q
−x iff inserted before all z, y < z ≤ x.

• deduce: item j away has prob 1/j. Add.

• Suppose y ∈ Q−
x .

–	 The inserted before x

–	 Suppose some z between inserted before y

–	 Then y in left subtree of z, x in right, so not ancestor

–	 Thus, y before every z

•	 Suppose y first

–	 then x follows y on all comparisons (no z splits

– So ends up in subtree of y

Rotation analysis

•	 Insert/Delete time

–	 define spines

–	 equal left spine of right sub plus right spine of left sub

–	 proof: when rotate up, on spine increments, other stays fixed.

•	 Rx length of right spine of left subtree

•	 E[Rx] = 1 − 1/k if rank k

•	 To show: y ∈ Rx iff

–	 inserted after x

–	 all z, y < z < x, arrive after y.

–	 if z before y, then y goes left, so not on spine

•	 deduce: if r elts between, r! of (r + 2)! permutations work.

•	 So probability 1/r2 .

•	 Expectation 1/(1 · 2) + 1/(2 · 3) + · · · = 1 − 1/k

•	 subtle: do analysis only on elements inserted in real-time before x, but now assume
they arrive in random order in virtual priorities.

7

