Intro

Administrivia.
e Signup sheet.
e prerequisites: 6.046, 6.041/2, ability to do proofs
e homework weekly (first next week)
e collaboration
e independent homeworks
e grading requirement
e term project
e books.
e question: scribing?
Randomized algorithms: make random choices during run. Main benefits:
e speed: may be faster than any deterministic
e even if not faster, often simpler (quicksort)
e sometimes, randomized is best
e sometime, randomized idea leads to deterministic algorithm
Distinguish average-cast analysis
e Probabilistic analysis assuming random input
e randomized algorithms do not assume random inputs
e so analyses are more applicable

We don’t really use random numbers. But randomized algorithms break
patterns we don’t know are there.

e deterministic algorithm: works well except a few specific cases.



But those are the ones you will encounter (Murphy)!
randomized: almost always works well on any case

but sometimes does bad on any case, so risky for life-threatening errors.

Course objective:

Randomization is a general technique. Applies to all areas of CS.
Underlying it is a common set of tools.

Goal is to give familiarity with those tools so you can apply them to
your own problems.

To present tools, we draw appliations from many areas of CS: data
structures, geometric algos, graph algos, parallel and distributed, num-
ber theory.

Because so many, only a brief taste of each.

But sufficient to go on alone.

Basic methodologies.

Avoiding adversarial inputs

— sorted quicksort list

a kind of random reordering (geometry—BSP)
— hashing to same buckets
— online algorithms

— note: “adversarial” may mean “well structured” i.e. natural
fingerprinting/verification

— generate short random fingerprints for things
— faster than comparing things
— almost every fingerprint works

— s0 a random one works



e random sampling. graph algs, computational geometry, median

— fast way to find “typical” members
— solve representative subproblem fast

— extrapolate to solution of original problem

load balancing

— randomization spreads things out uniformly

— parallel algs, routing, hashing

symmetry breaking

— random decisions keep everyone from doing the same thing
— ethernet

— deadlocks avoidance in distributed systems (MUST randomize)

Probabilistic existence proofs

— thought experiment
— prove an object is build with positive probability
— guarantees object exists

— makes search for algo worthwhile.
Today: 2 really basic principles:
e linearity of expectation
e product of event probabilities (independence)
Then some fundamental ideas:
e Kinds of randomized algorithms

e a bit of complexity



Quicksort

Items Sy,...,S, to be sorted
e suppose could pick middle element:
T(n)=2T(n/2)+ O(n) = O(nlogn)
works since divides into much smaller subproblems
e picking middle is hard. But an almost middle element is OK.

e pick random element. “probably” near middle and divides problem in
two

e bound expected number of comparisons C'
e X;; = 1if compare i to j
e linearity of expectation: F[C]| =) E[X,)]
o E[Xi] = pij
e Consider smallest recursive call involving both ¢ and j.
e pivot must be one of 5;, ..., 5. all equally likely
e S; and S; get compared if pivot is S; or S
e probability is at most 2/(j — i + 1) (may have outer elements)
e analysis:
D> i<y Y 2/ -it)

=1 5> =1 j>1
n n—i+1

DIDNEY

i=1 k=1

R
i=1 k=1
< 2nH,



(Define H,, claim O(logn).)

= O(nlogn).

analysis holds for every input, doesn’t assume random input

e we proved expected. can show high probability

how did we pick a random elements? Depends on model.

algorithm always works, but might be slow.

BSP

e linearity of expectation. hat check problem
e Rendering an image

— render a collection of polygons (lines)
— painters algorithm: draw from back to front; let front overwrite

— need to figure out order with respect to user
e define BSP.

— BSP is a data structure that makes order determination easy
— Build in preprocess step, then render fast.

— Choose any hyperplane (root of tree), split lines onto correct side
of hyperplane, recurse

— If user is on side 1 of hyperplane, then nothing on side 2 blocks
side 1, so paint it first. Recurse.

— time=BSP size

e sometimes must split to build BSP

how limit splits?

autopartitions

e random auto



e analysis

— index(u,v) = k if k lines block v from u
— u v if v cut by v auto

probability 1/(1 + index(u,v)).

tree size is (by linearity of F)

n+ Z 1/index(u,v) < Z 2H,

result: exists size O(nlogn) auto

e gives randomized construction

equally important, gives probabilistic existence proof of a small
BSP

so might hope to find deterministically.

MinCut
e the problem

e contraction
e conditionally independent events
e give/analyze
e repetition for better success probability (independent events)
e faster implementation later
Monte Carlo vs. Las Vegas
e turn LV to MC by truncating
e turn MC to LV by certifying.

e if can’t certify, dangerous!



