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NO COLLABORATION is allowed on this problem set. 

1. The Aethernet corporation has developed an exciting new protocol to let a collection 
of m machines communicate on a shared wire. Time is divided into fixed slots. In 
a slot, any machine that wants to send information to another can broadcast it onto 
the wire. If exactly one request is broadcast in the slot, that broadcast is successfully 
completed. If more than one broadcast is attempted, none are successful. 

(a) Assuming that the number of machines	 n that wish to broadcast is known, de­
vise a randomized protocol that will, with no communication overhead, let some 
broadcast succeed with constant probability in each time slot, without favoring 
any particular machine. 

(b) Assume that there is a fixed set of n machines, each of which repeatedly tries (in 
every slot) to send (an infinite sequence of) packets using the protocol from the 
previous part. What is the expected time until every machine has sent its first 
packet? 

(c) For this subproblem and the remainder, assume that in each time slot,	 some set 
of n machines decides to broadcast a packet. However, in each time slot, the set 
of machines might be different. 

Prove that over a sufficient length of time (number of slots), with high probabil­
ity every machine broadcasts at least Ω(1/n) of the times that it wants to (thus 
achieving a fair share of the bandwidth on the wire). In other words, show that 
if there are s slots in which M is one of the n machines trying to broadcast, then 
with high probability, M broadcasts in Ω(s/n) slots. 

(d) For a competitive advantage, Aethernet believes they can cut costs by using fewer 
random bits to make broadcast decisions. Assume that each of the m machines 
has a distinct integer serial number in 1, . . . ,m. Assume that Aethernet corp can 
broadcast to the entire group of machines a single O(log m)-bit random number 
per slot, but that no other randomness is used. And assume again that n is known. 
Devise a scheme that achieves the same result as part (a) under this model. That 
is, in each slot achieves Pr[some broadcast succeeds] = Ω(1). There is no need to 
achieve fairness, but it should be clear that the scheme is mostly fair. 
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(e) (optional) Show that it suffices for the system to broadcast a single random O(log m) 
bit value at the start of computation and still achieve the goals of the previous 
part. 

2. (Based on MR 5.3). An independent set in a graph is a set of vertices with no edges 
connecting them. Let G be a graph with nd/2 edges (d > 1), and consider the following 
probabilistic experiment for finding an independent set in G: delete each vertex of G 
(and all its incident edges) independently with probability 1 − 1/d. 

(a) Compute the expected number of vertices and edges that remain after the deletion 
process. Now imagine deleting one endpoints of each remaining edge. 

(b) From this, infer that there is an independent set with at least n/2d vertices in any 
graph with on n vertices with nd/2 edges. 

(c) Apply the method of conditional expectations to the above experiment to define a 
deterministic algorithm for finding an independent set of size n/2d. 

3. A cut in a graph is a partition of the vertices into two parts A and B. The size of the 
cut is the number of edges with one end in A and the other in B. A minimum cut is 
a cut of minimum size. Give a Monte Carlo algorithm that finds the second smallest 
cut in a graph with high probability (if a graph has two distinct minimum cuts, the 
second smallest cut is a minimum cut). 

4. A	 bi-bucket hash (bash) function maps each item in a universe U to two possible 
values. A bash-function can be used in a dictionary: to lookup an item, check in 
both possible locations. An advantage of the bash-function is that you can choose 
which of two locations to place the item in, which gives some improved load-balancing 
opportunities. In particular, consider an insertion rule that places each inserted item 
into the less-occupied of its two locations. 

(a) Suppose that n items are inserted into n1.5 locations using a random bash function. 
Give a reasonably good upper bound on the expected number of collisions. 

(b) A bash is perfect for	 a set S if there is some assignment of the items to their 
candidate locations such that no two elements of S share a location. Under the 
obvious generalization of the definition, prove that there exists a perfect bash family 
mapping n items to O(n1.5) locations of size polynomial in n and log(|universe ).|

(c) Generalize your	 results to achieve smaller space usage with perfect tri-bucket 
(trash), quad-bucket (quash) and higher bucket hash families. 

5. Bash functions also have interesting applications for load balancing.	 In class we dis­
cussed that when n balls are thrown randomly into n bins, the maximum number of 
balls in a bin is Θ(log n) with high probability. Suppose instead that we insert them 
using a (truly random) bash function. We will prove that with high probability the 
maximum load drops to Θ(log log n), an exponential improvement. When the ith item 
is inserted in a random bin, let hi denote the (random) number of items already in 
that bin. Let nh denote the (random) number of items with hi ≥ h. 
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(a) Argue that with high probability n1 ≤ n(1 − 1/e). 

(b) Suppose that nh ≤ �n. Argue that E[nh+1] ≤ �2n conditioned on this fact. 

(c) Prove	 that there is some h = O(log log n) such that nh = O(log n) with high 
probability 

(d) Using the h from the previous section, prove that with high probability there are 
no balls with hi ≥ h + O(1). 

3





