
6.856 — Randomized Algorithms

David Karger

Handout #13, October 16, 2000 — Midterm, Due 10/23

NO COLLABORATION is allowed on this problem set.

1. The Aethernet corporation has developed an exciting new protocol to let a collection
of m machines communicate on a shared wire. Time is divided into fixed slots. In
a slot, any machine that wants to send information to another can broadcast it onto
the wire. If exactly one request is broadcast in the slot, that broadcast is successfully
completed. If more than one broadcast is attempted, none are successful.

(a) Assuming that the number of machines	 n that wish to broadcast is known, de­
vise a randomized protocol that will, with no communication overhead, let some
broadcast succeed with constant probability in each time slot, without favoring
any particular machine.

(b) Assume that there is a fixed set of n machines, each of which repeatedly tries (in
every slot) to send (an infinite sequence of) packets using the protocol from the
previous part. What is the expected time until every machine has sent its first
packet?

(c) For this subproblem and the remainder, assume that in each time slot,	 some set
of n machines decides to broadcast a packet. However, in each time slot, the set
of machines might be different.

Prove that over a sufficient length of time (number of slots), with high probabil­
ity every machine broadcasts at least Ω(1/n) of the times that it wants to (thus
achieving a fair share of the bandwidth on the wire). In other words, show that
if there are s slots in which M is one of the n machines trying to broadcast, then
with high probability, M broadcasts in Ω(s/n) slots.

(d) For a competitive advantage, Aethernet believes they can cut costs by using fewer
random bits to make broadcast decisions. Assume that each of the m machines
has a distinct integer serial number in 1, . . . ,m. Assume that Aethernet corp can
broadcast to the entire group of machines a single O(log m)-bit random number
per slot, but that no other randomness is used. And assume again that n is known.
Devise a scheme that achieves the same result as part (a) under this model. That
is, in each slot achieves Pr[some broadcast succeeds] = Ω(1). There is no need to
achieve fairness, but it should be clear that the scheme is mostly fair.

1

rkutty
Text Box
M. R. refers to this text:
Motwani, Rajeez, and Prabhakar Raghavan. Randomized Algorithms. Cambridge:
Cambridge University Press, 1995.

(e) (optional) Show that it suffices for the system to broadcast a single random O(log m)
bit value at the start of computation and still achieve the goals of the previous
part.

2. (Based on MR 5.3). An independent set in a graph is a set of vertices with no edges
connecting them. Let G be a graph with nd/2 edges (d > 1), and consider the following
probabilistic experiment for finding an independent set in G: delete each vertex of G
(and all its incident edges) independently with probability 1 − 1/d.

(a) Compute the expected number of vertices and edges that remain after the deletion
process. Now imagine deleting one endpoints of each remaining edge.

(b) From this, infer that there is an independent set with at least n/2d vertices in any
graph with on n vertices with nd/2 edges.

(c) Apply the method of conditional expectations to the above experiment to define a
deterministic algorithm for finding an independent set of size n/2d.

3. A cut in a graph is a partition of the vertices into two parts A and B. The size of the
cut is the number of edges with one end in A and the other in B. A minimum cut is
a cut of minimum size. Give a Monte Carlo algorithm that finds the second smallest
cut in a graph with high probability (if a graph has two distinct minimum cuts, the
second smallest cut is a minimum cut).

4. A	 bi-bucket hash (bash) function maps each item in a universe U to two possible
values. A bash-function can be used in a dictionary: to lookup an item, check in
both possible locations. An advantage of the bash-function is that you can choose
which of two locations to place the item in, which gives some improved load-balancing
opportunities. In particular, consider an insertion rule that places each inserted item
into the less-occupied of its two locations.

(a) Suppose that n items are inserted into n1.5 locations using a random bash function.
Give a reasonably good upper bound on the expected number of collisions.

(b) A bash is perfect for	 a set S if there is some assignment of the items to their
candidate locations such that no two elements of S share a location. Under the
obvious generalization of the definition, prove that there exists a perfect bash family
mapping n items to O(n1.5) locations of size polynomial in n and log(|universe).|

(c) Generalize your	 results to achieve smaller space usage with perfect tri-bucket
(trash), quad-bucket (quash) and higher bucket hash families.

5. Bash functions also have interesting applications for load balancing.	 In class we dis­
cussed that when n balls are thrown randomly into n bins, the maximum number of
balls in a bin is Θ(log n) with high probability. Suppose instead that we insert them
using a (truly random) bash function. We will prove that with high probability the
maximum load drops to Θ(log log n), an exponential improvement. When the ith item
is inserted in a random bin, let hi denote the (random) number of items already in
that bin. Let nh denote the (random) number of items with hi ≥ h.

2

(a) Argue that with high probability n1 ≤ n(1 − 1/e).

(b) Suppose that nh ≤ �n. Argue that E[nh+1] ≤ �2n conditioned on this fact.

(c) Prove	 that there is some h = O(log log n) such that nh = O(log n) with high
probability

(d) Using the h from the previous section, prove that with high probability there are
no balls with hi ≥ h + O(1).

3

