
6.856 — Randomized Algorithms


David Karger 

Handout #5, September 18, 2002 — Homework 3, Due 9/25 

1. Based on MR 4.1. Suppose that you wish to estimate the (small) fraction f of Repub­
licans in Massachusetts. Assume that you are able to select a resident uniformly at 
random and determine their political affiliation. Assume also that you know some 
lower bound a < f . Devise a procedure for estimating f by some f̂ such that 
Pr[ f − f̂ > εf ] < δ, for any choice of constants 0 < a, ε, δ < 1. Let N be the | |
number of residents you must query to get the estimate. What is the smallest value of 
N for which you can give your guarantee? 

2. MR 4.14.	 Show that the Quicksort algorithm of Chapter 1 runs in O(n log n) time 
with high probability. Hint: bound the number of pivots to which a given item is 
compared. 

3. (Based on MR 3.4). This problem can be thought of as modeling some parallel system 
in which the solution to contention for a resource is for the contenders to back off and 
try again. 

Consider the following experiment that proceeds in a sequence of rounds. For the first 
round, we have n balls, which are thrown independently and uniformly at random into 
n bins. After round i, for i ≥ 1, we discard every ball that ended up in a bin by itself 
in round i. The remaining balls are retained for round i + 1, in which they are again 
thrown independently and uniformly at random into the n bins. 

(a) Suppose that in some round we have k = εn balls. How many balls should you 
expect to have in the next round? 

(b) Assuming that	 everything proceeded according to expectation, prove that we 
would discard all the balls within O(log log n) rounds. 

(c) Convert the previous part into a true proof that with probability 1 − o(1), we 
discard all balls within O(log log n) rounds. Hint: call a round good if the number 
of balls retained is not much more than expected. What is the probability that a 
round is good? Show that with probability 1 − o(1), we get enough good rounds 
among the first O(log log n) to finish. 

4.	 (Optional) MR 4.7. Prove that Chernoff bounds hold for arbitrary random variables 
in the [0, 1] interval: 
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(a) A function f is said to be convex if for any x, y, and 0 ≤ λ ≤ 1, f(λx+ (1 − λ)y) ≤
λf(x) + (1 − λ)f(y). Show that f(x) = etx is convex for any t > 0 (you can use 
the fact that etx has positive second derivative everywhere). What if t ≤ 0? 

(b) Let Z be a random variable that takes values in the interval [0, 1] and let p = E[Z]. 
Define the Bernoulli random variable X such that Pr[X = 1] = p. Show that for 
any convex f , E[f(Z)] ≤ E[f(X)]. 

(c) Let Y1, . . . , Yn be independent identical distributed random variables over [0, 1] 
and define Y = Yi. Derive Chernoff-type upper and lower tail bounds for the 
random variable Y . In particular, show that for δ ≤ 1, 

Pr[Y − E[Y ] > δ] ≤ exp(−δ2/2n). 

5.	 (Optional) (variant of MR 4.22). Chernoff bounds with dependent variables: 
Chernoff bounds are quite powerful, but are limited to sums of independent random 
variables. In the next problem, we will consider ways to apply them to sums of de­
pendent random variables by comparing the dependent distributions to independent 
ones. 

Consider the model of n balls tossed randomly in n bins. We derive tight bounds on 
the number of empty bins. Let Xi be the indicator variable that is 1 if the i-th bin is 
empty. Let Z = Ii be the number of empty bins. Define p = E[Xi] = (1 − 1/n)n 

and let Xi
� be n mutually independent Bernoulli random variables that are 1 with 

probability p. Note that Y = has the binomial distribution with parameters nXi
�

and p. 

•	 Show that for all t ≥ 0, E[etZ ] ≤ E[etY ] (hint: think about comparing E[Y k ] and 
E[Zk ] by expanding them). Conclude that any Chernoff bound on the upper tail 
of Y ’s distribution also applies to the upper tail of Z’s distribution, even though 
the Bernoulli variables Xi are not independent. (The point is that their correlation 
is negative and only helps to reduce the tail probability.) Give a resulting bound 
on the upper tail of Z. 

•	 (This one is very hard) Perform the same sort of analysis for the lower tail. 
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