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Problem 1 First let’s eliminate edges of length 0. Two vertices connected by an edge of
length 0 have the same distance to everything, so we can contract all such edges and work
in the simplified graph without 0-edges. Let D(i, j) be the distance from i to j. We know
that

1. every neighbor k of i has D(i, j)−B ≤ D(k, i) ≤ D(i, j) +B

2. some neighbor has D(i, k) +D(k, j) = D(i, j).

So suppose we consider taking distances modulo 2B+1. If D(i, j) = d and D(i, k)+D(k, j) ≡
d (mod 2B+1), then D(i, k)+D(k, j) = d+m(2B+1). But the first item above shows that
m must be zero, meaning any such k is on the shortest path from i to j. Such a neighbor
must exist by item 2 above.

So consider the matrix A(d) where A(d)(i, k) is 1 if D(i, j) ≡ d (mod 2B + 1) and 0
otherwise. If D(i, j) ≡ d (mod 2B + 1) then we could find a successor for i on the shortest
(i, k) by finding a (known to exist) vertex k such that for some r, D(i, k) = r and D(k, j) =
d−r. Finding such a vertex requires checking the (i, j) entry in a WBPM of A(r) and A(d−r).
We need to do this for B possible values of r and 2B+ 1 possible values of d− r, so the total
work is B2 WBPM computations.

Problem 2 The key step is to modify the weights so that the minimum weight perfect
matching is unique; at this point the in-class construction can be applied, so long as all
weights are polynomial.

Consider the initial graph, and let W be the minimum weight of a perfect matching. As a
first step, we multiply all edge weights (and thus all perfect-matching weights) by 3nm. In the
new graph the minimum weight matching has value 3nmW , while the next-smallest weight
of a matching (originally at least W+1) is at least 3nm(W+1) = 3nmW+3nm. Suppose we
now add an independent random integer perturbation, between 1 and 2m, to each edge. Note
that this changes the value of each perfect matching by at most n(2m) = 2nm. It follows that
any originally minimum-weight matching ends up with weight at most n3W + 2nm. Since
any originally non-minimum weight matching has weight at least n3W +3nm, it follows that
any minimum weight matching in the perturbed graph corresponds to a minimum weight
matching in the original graph.

It remains to show that the minimum weight matching in the perturbed graph is unique.
To do so, consider all edge sets which correspond to originally-min-weight perfect matchings.
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Each such set receives a “total perturbation” equal to the sum of perturbations on its edges.
By the isolating lemma, since there are only m distinct edges to be perturbed, the probability
that the minimum total perturbation is unique is at least 1/2. Since all min-weight matchings
start with the same original weight, if the minimum total perturbation is unique, it follows
that we will end up with a unique min-weight perfect matching.

Problem 3 As for the in-class algorithm, we focus on good vertices, those vertices v with
at least d(v)/3 neighbors of degree no more than d(v).

Note first that the probability that two vertices get the same weight is equal to the
probability of a collision when n vertices are mapped to n4 weights, which is less than 1/n3.
So we can assume that no collision happens, and perform the rest of our analysis conditioned
on the event of no collisions. Conditioned on this event, all that is important in the analysis
is the relative (ranking) order of weights on the nodes. It is easy to see by symmetry that
this random ranking is a uniform permutation of the vertices.

The easiest way to analyze this problem is to map it back to the in-class analysis. Using
the speciified weight assignment, declare a vertex w to be marked if its assigned weight is
at most than n4/2d(w). Note that this happens with probability 1/2d(w). Note also that
the events of different vertices being marked are independent since each vertex’s marking
depends only on the weight of that vertex.

Now let us consider a particular good vertex v, i.e. one with at least d(v)/3 neighbors
of degree at most d(v). Such a neighbor w is marked with probability 1/2d(w) ≥ 1/2d(v).
Since there are at least d(v)/3 of these low-degree neighbors, and since the marking events
are independent, the probability that no such neighbor of v is marked is at most (1 −
1/2d(v))d(v)/3 ≤ e−1/6.

Conditioned on a vertex being marked, let us determine the probability it is incorporated
in S. This happens if no neighbor of w gets a smaller weight. Since the weight on w is at
most n4/2d(w), the probability that any particular neighbor gets a smaller weight is at
most 1/2d(w). Since there are only d(w) neighbors, it follows from the union bound that,
conditioned on w being marked, the probability it has a smaller-weight neighbor is at most
1/2. This implies that any marked vertex is included in S with probability at least 1/2.

Combining these two arguments, exactly as in the text, we deduce that some neighbor
of a good vertex is incorporated into S with probability at least e−1/6/2. The remainder of
the analysis (which is based on bounding the expected number of good edges removed in an
iteration) proceeds exactly as in the text.

Problem 4 Most correct solutions got W = O(n6) using the Isolating Lemma. Here we
present a neat solution achieving O(n5) due to Harold Fox. The solution actually “sacrifices”
some randomness in order to make the analysis easier and get the better bound.

Find a MST of the graph. Fix every edge not in the MST at a length Θ(n5). Randomly
assign the lengths to the edges of the MST from 1...n4. Note that this assignment of lengths
guarantees that the shortest paths will only use edges of the MST. Furthermore, since shortest
paths in a MST(or any tree for that matter) are unique, our first condition is always satisfied.
Now we consider the second condition that all pairwise distances are distinct. Consider any
pair of pairs (i,j), (k,l). By our construction, they have different distances if the random
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assignment of lengths to the edges of the 2 paths i to j and k to l make them different.
Since there must be one edge in one and not the other, the probability of equal distances

is < 1
n4 . Union bounding over

((n2)
2

)
pairs of pairs gives a probability still less than 1, and

so the Probabilistic Method guarantees the existence of a good assignment. Thus, W need
only be O(n5).
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