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Problem 1 

(a) We let each machine broadcast independently with probability 1/n. Then the probability 
that exactly one machine tries to broadcast in a given timeslot is equal to
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i.e. larger than some constant independent of n. 

(b) From (a) we know that the expected time until some machine is successful is Θ(e). Since 
the problem is symmetric in all n machines, the successful machine is equally likely to 
be any of the machines. This is also true for the next successful machine, and so on. So 
the question is how long it takes for all machines to be successful, if every Θ(e) steps, 
a random machine is successful. This is just the coupon collectors problem: we expect 
Θ(n ln n) successful broadcasts before every machine actually sent their first packet. So 
the expected time for all machines to be successful is Θ(ne ln n). 

(c) The probability that a machine is successful in a particular slot is equal to the probability 
that a) the machine tries to broadcast, and b) nobody else tries to broadcast. Since the 
machines decide on broadcasts independently, there probabilities are also independent, 
and therefore � 
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So over s time slots, the expected number of successful broadcasts is Θ(s/ne) = c · s/ne 
(for some c > 0). Using Chernoff, we can estimate the probability that the machine is 
successful less than half that number of times: 

Pr[sucessful ≤ cs/(2ne) times out of s] ≤ exp(−cs/(8ne)) = αs/n 

for some α < 1. This shows high probability in terms of increasing s. 

(d) We use 2-point-sampling to determine when a machine gets to go. For simplicity, assume 
that m is prime (all of the following is still true if we replace m by some prime in the 
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interval [m, 2m]). Assume that Aethernet broadcasts 2�log m� bits that encode two 
random numbers a, b ∈ Zm. Then every machine takes its serial number s, and computes 
as + b mod m. If that quantity falls in the interval [0, m/2n], the machine broadcasts, 
otherwise it stays silent. 

Let’s analyze the probability that some particular machine broadcasts successfully. This 
is equal to 

Pr[our machine tries to broadcast]


Pr[no other machine tries to broadcast | our machine tries to broadcast].
· 

The first probability is obviously 1/2n, since as + b mod m is equally likely to be any 
number between 0 and m−1. But since 2-point-sampling generates pairwise independent 
samples for two different machines, the probability that any other given machine tries to 
broadcast given that our machine tries to broadcast, is also 1/2n. Therefore the expected 
number of other machines that tries to broadcast is ≤ (n − 1)/2n ≤ 1/2. By Markov’s 
inequality, that implies that the probability that at least one machine tries to broadcast 
(given that our machine tries to broadcast) is at most 1/2. 

This show that our machine successfully broadcast with probability at least 1/2n · 1/2 = 
1/4n. Since the events of a successful broadcast are disjoint for different machines, the 
probability that some machine successfully broadcasts is n · 1/4n = 1/4 = Ω(1). 

(e) We just saw that if we pick the 2-point-sampling pair (a, b) at random, we obtain a pair 
that allows for a successful broadcast with probability 1/4. But suppose we now generate 
those pairs (a, b) using two point sampling. This can be done by picking a prime p slightly 
larger than m2, picking two seeds u, v ∈ Zp, and generating pairs as (ai, bi) = (�αi/m�, αi 

mod m), where αi = (ui + v mod p). We set i = 0 at the beginning of the protocol and 
then increase its value by one at every time slot (i.e. every machine keeps track of the 
current i). 

So the pairs (ai, bi) can be generated by each machine just given the initial broadcast of u 
and v, which uses about 4 log m bits. Since the (ai, bi) are chosen pairwise independently, 
we can use Chebyshev to determine the number of times a successful broadcast occurs 
over time. 

Consider one particular machine, and assume it wants to transmit during s time slots. 
In part (d) we determined, that it succeeds with probability 1/4n in each time slot, 
so the expected number of transmissions is s/4n. The variance of that distribution is 

n(1/4n)(1 − 1/4n) < 1/2. Using Chebyshev, we see that the probability of sending 
out at least s/8n broadcasts can be bounded by 

1 16n2 

Pr[ #broadcasts − s/4n ≥ s/8n] =
(s/4n)2 

= . 
2

| | 
s

This is a high probability is terms of growing s. 
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Problem 2 

(a) Every vertex gets deleted with probability 1/d, so we expect n/d vertices to remain. 
An edge does not get deleted if both endpoints do not get deleted, which happens with 
probability 1/d2 . Obviously, the events of edges getting deleted are not independent, 
but by linearity of expectation, be expect (1/d2) · (nd/2) = n/2d edges to remain. 

(b) After applying this sampling, we create an independent set as follows: for each edge in 
the resulting graph, delete one of the endpoints. After doing this for each edge, none of 
the remaining vertices are connected by any edges, i.e. form an independent set. If G� is 
the graph we obtain after sampling, we the expect the size of the independent set to be 

E[size of independent set] = E[# vertices in G� −# edges in G�] 

= E[# vertices in G�] − E[# edges in G�] 

= n/d− n/2d = n/2d. 

Since there will be at least one outcome with a value equal to (or greater than) the 
expectation, there must be an independent set of size ≥ n/2d. 

(c) Suppose the vertices are labeled 1, 2, . . . , n. Then we go through the vertices in this 
order, and compute the expected sizes of the independent set depending on whether we 
pick vertex i or not, given the choices we already made for vertices 1, 2, . . . , i− 1. If we 
always choose the higher of the two values, then the method of conditional expectations 
guarantees that the independent set we finally end up with has size at least n/2d – the 
expected value. 

As seen above, to compute the expected size of the independent set, we have to compute 
the expected number of nodes and edges in our final sample – the size of the independent 
set is equal to their difference. 

The expected number of nodes is easy to determine: suppose we picked k nodes among 
the set {1, 2, . . . , i − 1}. Then the expected number of nodes in the final sample is 
k + (n− i)/d or k + (n− i)/d + 1, depending of whether we pick element i or not. 

Slightly more complicated is determining the expected number of edges. Let K ⊆ 
{1, 2, . . . , i− 1} the set of vertices that we already picked. Set k1 := E ∩K ×K to be | |
the number of edges between already picked vertices – these will definitely be in the final 
sample. Let k2 := E ∩K × {i + 1, i + 2, . . . , n}| be the edges between already picked |
vertices, and vertices which we have yet to decide on, each gets picked with probability 
1/d. Finally, k3 := E ∩{i + 1, i + 2, . . . , n}× {i + 1, i + 2, . . . , n}| are the edges that are |
picked with probability 1/d2 in the future.


Let k� and k� be the values of k1 and k2 if we replace K by K ∪ {i}. Then the expected
1 2 
�

2/d+ k3/d
2, if we pick i, and k1 + k2/d+k3/d

2number of edges in the final sample is k1 +k�

if we do not pick i. This shows that we easily compute the desired expectations. 
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Problem 3 We are going to modify the algorithm CA ( Contraction Algorithm) slightly, 
so that it returns the second smallest cut instead of the smallest cut. First we observe that 
if the size of the second smallest cut is k, then the degree of all but one node must be at 
least k. Therefore, the graph contains at least k(n − 1)/2 edges. Thus, when we contract an 
edge, the probability that we pick an edge from the second smallest cut is at most 

k 2 
= . 

k(n−1) n − 1 
2 

If we perform a series of contractions down to 3 vertices, the probability that the second 
smallest cut survives is at least 

n � � n� 2 � j − 3 2 
= = .1 − 

j − 1 j − 1 (n − 1)(n − 2)
j=4 j=4 

Assuming the second smallest cut survives contraction to 3 vertices, we can find it by 
checking the degrees of the resulting 3 vertices. Thus, a single run of the contraction al­
gorithm finds the second smallest cut with probability Ω(1/n2). It follows that O(n2 log n) 
trials will find the second smallest cut with high probability. 

Of course, we need to know that it is the second smallest cut when we find it. But that 
is easy if we find the minimum cut first. 

Problem 4 

(a) Consider the (k + 1)st item inserted. Since only k buckets (at worst) are occupied, 
the probability that both candidate locations are occupied is only (k/n1/5)2 . Thus, the 
expected number of times an item is actually inserted into an already-occupied bucket 
is at most 

n−1

(k/n1.5)2 =
(n − 1)(n)(2n − 1) 

6n3 
k=0 

≤ 1/3 

Now let’s consider pairwise collisions. Item k collides with item j < k only if (i) one of 
the candidate locations of item k is the location as item j (this has probability at most 
2/n1.5) and (ii) the other candidate location for item k contains at least one element 
(probability k/n1.5). Thus, the probability k collides with j is at most k/n3 . Summing 
over the k possible values of j < k, we find the expected number of collisions for item k 
is at most k2/n3 . Summing over all k, we get the same result as above: O(1) expected 
collisions. 

(b) Start with a 2-universal family of hash functions mapping n items to 2n1.5 locations. 
Consider any particular set of n items. Consider choosing a random function from the 
hash family family. The probability that item k collides with item j is 1/2n1.5 by pairwise 
independence, implying by the union bound that the probability k collides with any item 
is at most 1/2

√
n. 
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Now suppose that we allocate two arrays of size 2n1.5 and choose a random 2-universal 
hash function from the family independently for each array. If an item has no collision 
in either array, then it will be placed in an empty bucket by the bash function. We need 
merely analyze the probability that this happens for every item (this would make the 
bash function perfect). 

The probability that item k has a collision in both arrays is at most (1/2
√

n)2 = 1/4n. 
It follows that the expected number of items colliding with some other item is at most 
1/4. This implies in turn that with probability 3/4, every item is placed in an empty 
bucket by the (perfect) bash function. This in turn implies that some pair of 2-universal 
hash functions defines a perfect bash for our set of n items. 

Since every set of items gets a perfect bash from this scheme, it follows that the family of 
pairs of 2-universal functions above is a perfect bash family. Since the 2-universal family 
has size polynomial in the universe, so does the family of pairs of 2-universal functions. 

(c) If we map our n items to k candidate locations in an array of size n1+1/k , our collision 
odds work out as above and we get a constant number of collisions. Similarly, k random 
2-universal hash families, each mapping to a set of size n1+1/k , has a constant probability 
of being perfect for any particular set of items, so the set of all such functions provides a 
perfect family (of polynomial size for any constant k). This gives a tradeoff of k probes 

1+1/k ).for perfect hashing in space O(n

Note that while we can achieve perfect hashing to O(n) space, the resulting family does 
not have polynomial size (since a different, subsidiary hash function must be chosen for 
each sub-hash-table). 

Problem 5 

(a)	 n1 is simply the number of balls that are placed in a nonempty bin, which occurs if 
and only if both of their candidate locations are nonempty. The probability that this 
happens to the kth ball is at most (k/n)2 (since at most k bins are nonempty). So the 
expected number of balls landing in nonempty bins is at most 

(k/n)2 =
(n − 1)(n)(2n − 1) 

6n2 

n/3≤ 

We’d like to use a Chernoff bound to deduce immediately that n1 ≤ n/2 (or any other 
constant multiple greater than 1/3 of n) with high probability. A small concern arises 
regarding dependence: the probability that the kth item lands in an occupied bin is 
dependent on the number of collisions among previous balls. But we are OK because 
this probability must be at most (k/n)2 and because the event of the kth item colliding 
(given the probability) is independent of previous events. More formally, suppose that 
as we insert random balls, each time a ball suffers a collision (so gets inserted into a 
nonempty bin) we add an extra artificial ball to one of the empty bins. The ensures 
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that when ball k is inserted there are exactly k − 1 nonempty bins, which removes the 
dependence of the collision probability on past history and lets us apply the chernoff 
bound. 

(b) This subpart had a bug:	 it conveys the target intuition without actually being true. 
What we are actually showing will be clear by the end. 

The intuitive argument is clear. An item gets height exceeding h only if both bins it 
maps to have height h or greater. If there are only �n items of height h or greater, then 
there are at most �n buckets of height h or greater. This means a random location has 
height h or greater with probability at most �. Thus the probability that both (random) 
locations for an item have height h or greater is at most �2 . This means that the expected 
number of items of height h + 1 or greater is at most �2n. 

The technical challenge arises from the conditioning. We want to condition on the event 
that nh ≤ �n. But this is certainly not independent of the event of any particular 
item having height exceeding h. We will show how to solve the conditioning problem 
when the conditioning event holds with high probability. Intuitively, conditioning on a 
high probability event does not change things very much (just as conditioning on a 
probability 1 event does not change things at all). 

So supppose that our event Ah that nh ≤ �n holds with high probability. We aim to 
show that E[nh+1] is close to �2n. Conditioning on Ah, our first task is to determine the 
probability of the event Xi that hi > h. The intuitive expectation argument above says 
that with this conditioning we believe that Pr[Xi] ≤ �2, which gives what we want. But 
perhaps the conditioning changes this probability? 

To analyze this it is helpful to consider the event Bi that there are less than �n height 
h bins when item i is inserted. Note that event Ah (that there are at most �n balls of 
height h at the end) implies Bi. We can then write 

Pr[Xi | Ah] = 
Pr[Xi ∧ Ah] 

Pr[Ah] 
Pr[Xi ∧ Bi]

since Ah implies Bi≤ 
Pr[Ah] 

Pr[Xi | Bi] Pr[Bi]≤ 
1 − 1/n2 

(since our assumption that Ah is true with high probability means we can take Pr[Ah] ≥
1 − 1/n2) 

�2 

≤ 
1 − 1/n2 

≤ 1.1�2 

Now that we know that the probability of Xi is at most 1.1�2 conditioned on Ah, we can 
deduce that E[nh+1] ≤ 1.1�2nh conditioned on Ah. 
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(c) We are going to define values �h such that, with high probability, nh ≤ �hn. We already 
have �1 = 1/2. Define the �h will satisfy the recurrence �h+1 ≤ 1.1�2 which means that h 

�h = 1/n for some i = O(log log n). 

The argument of the previous section tells us that conditioned on the event Ah of nh ≤
�hn, the probability that any particular ball has height exceeding h is at most 1.1�2 . 
This suggests that we apply the Chernoff bound, arguing that so long as �h � log n, the 
actual value of nh+1 is close to its expectation with high probability. Of course, we have 
to worry about independence. But we can avoid this the same way we did in the first 
subpart. Although the Pr[hi > h] is determined by the previous history, the event that 
hi > h is independent given the probability. In other words, we can imagine increasing 
the probability that hi > h so that it is always exactly 1.1�2n; this makes it independent 
of the previous history and gives a distribution that stochastically dominates the true 
distribution. Since these modified variables are independent we can apply the Chernoff 
bound as desired. 

(d) By the previous part there is an	 h = O(log log n) such that nh = O(log n) with high 
probability. The Chernoff bound is not longer powerful enough to take us lower. But 
much of the analysis of the previous section still works. Conditioning on nh = O(log n), 
we can conclude that the probability any particular ball height exceeds h + 1 is at most 
1.1�2 where � = O((log n/)n). As above, the number of balls of height exceeding h 
is stochastically dominated by a sum of n independent random variables, each 1 with 
probability �2 . The probability that some set of k of these variables is all 1 is at most 

n 2)k(1.1� = O(n k (
log n 

)2k)
k n 

log2 n 
)k )= O(( 

n 
= O(n 1−k ) 

Proving that with high probability, at most a constant number of balls have height 
exceeding h. This of course implies that the maximum height is h+ O(1) = O(log log n). 
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