
� 

� � 

� � � � 

� �
� � 

� � �
� 

6.856 — Randomized Algorithms


David Karger 

Handout #14, October 20, 2002 — Homework 6 Solutions 

Problem 1 Consider a perfect hash family F of size N . For some f let ai for∈ F , 
n be the number of elements that f maps to the number i. The number of sets of 1 ≤ i ≤ � 

size n for which f is perfect is exactly i
n 
=1 ai. This is because for each i such a set has to 

contain a number that maps to i, and there are ai choices for this number. 
Since ai = m, and a product where the factors have a constant sum becomes maximized 

when all terms are equal, we have 

n� � m �n 
.ai ≤ 

n 
i=1 

Since there are m total subsets for which we need a perfect function, and each function is 
n 

perfect for at most (m/n)n subsets, we must have 

m m 
N · (m/n)n ⇐⇒ N ≥ (n/m)n .≥ 

n n 

Using Stirling’s approximation, this yields 

m n m n
√ 

2πm 
N � � � � � · Ω(1)

n n m−n m−n≥ 
mn 2π n(m − n) 

e 

e � e 
m−n 

m m 
= · Ω(1) 

n(m − n) m − n 
m−n 

m n 
= 1 + · Ω(1) 

n(m − n) m − n 

m n = e · Ω(1) = eΩ(n) , 
n(m − n) 

so can there can be no perfect hash family for the choices of m given in the problem statement. 

Problem 2 MR 8.20. 

Choose a hash random function from a 2-universal hash family and hash each integer 
in the first set into a table of size O(m). At each entry in the table, keep count of the 

1


rkutty
Text Box
M. R. refers to this text:
Motwani, Rajeez, and Prabhakar Raghavan. Randomized Algorithms. Cambridge: Cambridge University Press, 1995.



� 

number of occurrences of each integer that hashes there. Also, keep the list of counts sorted 
(this is easy, since we are allowed to spend time proportional to the number of entries in 
the bucket to insert a new item). As we argued in class, the expected time to build this 
table is O(m) (assuming unit-cost multiplications). Note that we need to keep counts, rather 
than lists, of identical integers to ensure that buckets do not grow arbitrarily large in the 
presence of many identical integers. Now, do the same for the second multiset, and compare 
the resulting hash tables for equality. This is a trivial linear time operation since the hash 
table buckets contain sorted lists. This gives a Las Vegas algorithm with expected run time 
O(n) considering m ≤ n. 

A common mistake in this algorithm is to link all the (copies of) items that land in a 
bucket instead of keeping just one counter of the number of occurrences of each distinct 
item. If there are n/2 copies of the same item, the mistaken approach would frequently 
search through and create lists of length n/2, resulting in too high a time bound. 

An alternative approach does away with the linked lists. Use the random hash function 
to hash the two sets into two tables, keeping a counter of how many elements in total hash to 
each (without separately tracking the distinct elements that hashed into a particular bucket). 
Then compare the two tables and the counters at each bucket in O(n) time. If the hash 
tables are different in any counter, then the sets are different. Alternatively, we can use just 
one table, incrementing bucket counters as we hash the first set into it and decrementing 
bucket counters as we hash the second set. We can declare equality if all the bucket counters 
end up at 0. 

This approach is Monte Carlo (there is a chance of different elements canceling each other 
out by collisions) but can be shown to work as follows. Clearly the algorithm never reports 
different when the two sets are the same. So suppose the two sets differ. Then there is an 
element x which appears a different number of times in the two sets. Assuming our hash 
table has b buckets, the expected number of elements that hash to the same bucket as x is 
n/b. If we set b = n/2 this is less than 1/2. It follows that with probability at least 1/2, no 
other item maps to the same bucket as x. If this happens, then there is no way to cancel 
out the difference in the number of x’s coming from the two sets, so we will detect that they 
are different. To summarize, if we use a bucket size of 2n then we have a probability 1/2 of 
detecting any discrepancy in the sets. This is sufficient for a Monte Carlo algorithm (with 
one sided error). 

Problem 3 MR 7.4. 

Given a multiset S with integers w1, . . . , wm all less than n, consider the polynomial 

P (S) = (x − wi). 
wi∈S 

Clearly, if two multisets are different, then their polynomials have different roots (or at 
least different root multiplicities) and are therefore different. Their difference is a degree m 
polynomial and therefore has at most m distinct roots over the integers. Thus, if we choose 
a random integer in the interval [0, 2m] there is at least a 1/2 chance that it will not be a 

2




root. In fact, if we choose our integer in the interval [0, (2m)2] then the probability that we 
choose a root is O(1/m), so we get the right answer with high probability. 

Of course, evaluating over the integers is very expensive, since the resulting numbers can 
be huge. However, suppose that we choose some random prime p from a set of size cm log n 
(for some constant c) and work modulo p. For example, we could choose p from the interval 
[0, cm log2 n]. 

Whatever random number we have chosen to substitute for x in the polynomial, the 
resulting value of the polynomial has magnitude O(nm) and therefore has at most O(m log n) 
distinct prime factors. We therefore have (by choosing c appropriately) a probability 1/2 of 
picking a prime p that is not a factor. If so, then when we evaluate the polynomial modulo 
p (which requires O(m) additions and multiplications of numbers of magnitude at most p) 
we get a nonzero answer (indicating a difference) with probability at least 1/2. 

If we treat products as unit-cost operations, this O(m) time fingerprinting scheme is 
clearly faster than sorting. However, if we recall that multiplication of b-bit numbers takes 
O(b log b) time in the log-cost RAM model, we find that the overall cost of computing the 
signature rises to O(m log m), the same as sorting. So even though the Monte Carlo nature 
of the signature scheme appears to make it the loser, it still has the advantage of a greatly 
reduced communication cost, since only the fingerprint has to be transmitted. 

Problem 4 

(a) Suppose the string has length m and the intended pattern size is k. As discussed in the 
text, in linear time we can generate a fingerprint for every length-k substring. Using 
a random 2-universal hash function, put all these keys (= fingerprints) into a size-m 
hash table such that the expected time to lookup a particular fingerprint is O(1). It 
is now easy to store with each key the number of times it occurs. Now, given any 
pattern, use the same textbook scheme to generate its fingerprint in O(k) time. Hash 
it into the table and see if that fingerprint is present. If so, read off the corresponding 
number of occurrences. Assuming the uniqueness of fingerprints (which happens with 
high probability) the answer we give is correct. 

It is a mistake to directly hash all length-k substrings using a 2-universal hash function. 
If finding h(x), (h is the hash function, x is a k-length substring) takes O(k) time, then 
the total preprocessing time is O(k(n − k + 1)), which is not necessarily linear, i.e. k 
could be 

√
n. Also storing the substrings themselves as keys in the hash table uses more 

than linear storage and makes comparisons expensive. 

Note that the construction of the hash table is in expected linear time. With a little more 
work (which was not required to solve the problem), we can actually do this in linear 
time with high probability. We use the following lemma: 

Lemma 1 If we hash k distinct items into a hash table of size n (k ≤ n) using a pairwise 
independent hash function, then with high probability (≥ 1 − 1/

√
n), every hash bucket 

contains at most k3/4 items. 

Proof: The expected number of different fingerprints mapping to the same hash value 
are µ = k/n < 1, and the variance of that number is σ = µ(1 − 1/n) < 1. Since the 

3




hash values are pairwise independent, we know by Chebyshev that the probability that 
some particular hash value is used more than k3/4 times is at most 1/k3/2 . Applying a 
union bound shows that with probability 1 − 1/

√
k > 1 − 1/

√
n, no hash value is used 

more than k3/4 times. This probability can be boosted to any polynomial by repeating 
the process a constant number of times. 

Using this lemma, we can do the following: we hash our n elements into a hash table 
of size n, then every hash bucket into a new table of size n, and every hash bucket in 
that table again in a hash table of size n. In every hashing operation we just prepend 
items to their hash bucket’s linked list in constant time. While this means that duplicate 
fingerprints (corresponding to multiple occurrences of the same pattern) are kept around, 
it guarantees that the whole process finished in linear time. 

Also notice that since we can do the hashing in sequence, we actually only need linear 
space (3 hash tables at a time), and the whole thing can be done in linear time. In 

3/4)3 27/64the third hash table, every bucket contains at most (n = n < 
√

n distinct 
fingerprints. 

Now if we hash each bucket one more time, i.e. 
√

n times to n buckets, we have for 
the expected number of distinct fingerprints per bucket µ = 1/

√
n, and variance σ = 

(1 − 1/n)/
√

n < 1/
√

n. Applying Chebyshev yields that the probability that a bucket 
contains more than one fingerprint is less than 1/n, i.e. happens with high probability. 
But now we can count how often the fingerprint occurs just by a linear pass through the 
linked list in the bucket. This yields the result in linear time with high probability. 

(b) Modify the hashing scheme above to use a perfect hash function that guarantees O(1) 
lookup time for every fingerprint in the text. Instead of storing a count of the number of 
occurrences of a given string, store the locations. Also during the preprocessing, make 
sure that each fingerprint in the text is unique (if it is not, try again until it works). Store 
the unique string associated with each fingerprint. Now, when we get an input pattern, 
generate its fingerprint and look it up in the perfect hash table. If it does not exist, 
we know the string is not present. If the fingerprint is present, we have time to verify 
that the input pattern is the same as the text pattern that generated the string. Then 
we can read off the locations. Since we can find a perfect hash function in worst-case 
polynomial time, we can preprocess the input in worst-case polynomial time. 

Problem 5 MR 8.28 

See the following paper (also available online at http://www.acm.org/dl): 

anos Koml´Michael L. Fredman, J´ os and Endre Szemerédi, Storing a Sparse Table with O(1) 
Worst Case Access Time, Journal of the ACM, 31(3):538–544, July 1984. 

4





