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6.856 — Randomized Algorithms


David Karger 

Handout #24, December 5th, 2002 — Homework 11 Solutions 

Problem 1 

(a) Let D be the disjoint union, and N := D|. We will denote by (a, x) ∈ D a particular |
assignment/clause pair in the disjoint union. That is, assignment a satisfies clause x and 
is the “clause x” copy of assignment a in the disjoint union. Note that our random sample 
chooses any pair (a, x) ∈ D with probability 1/N . It follows that 

E[Xt] = (1/N ) · (1/ca)N · N · 
(a,c)∈D 

= 1/caca · 
a 

= 1 
a 

which is just the number of satisfying assignments, as claimed. 

(b) We need to argue that we can estimate E[Xt] to within (1 ± ε) using the desired number 
of trials. But observe that Xt is a random variable whose value is bounded in the range 
[0, 1]. Thus the generalized Chernoff bound of Homework 2, Problem 6 applies to sums 
of independent samples of Xt. Note also that E[Xt] ≥ 1/m since ca ≤ m in all cases. It 
follows that the sum of mµεδ samples has expected value at least µεδ , which means (by the 
definition of µεδ ) that the probability that this sum deviates by more than ε from its mean 
is at most δ. 

(c) To estimate ca, we will choose random clauses and check if a satisfies them. Note that the 
probability that a satisfies a randomly chosen clause is just ca/m. So we can estimate ca 

by estimating the probability a random clause satisfies a. We will refer to these random 
choices of clauses as “sub-trials” and reserve the word “trial” to refer to choosing a random 
assignment and then carrying out a series of sub-trials to estimate its coverage. 

We’ll use a δ� that we set later. We will keep choosing clauses until we see µεδ clauses that a 
satisfies. We expect to have to choose (m/ca)µεδ clauses to do this. Once we see this many 
clauses, we get an estimate c for ca that is accurate to within (1 ± ε) with probability 1 − δ�. 
It follows that 1/c = (1 ± 2ε)/ca, so that we have an O(ε)-accurate approximation to 1/ca 

with probability 1 − δ�. If each of our estimates of 1/ca is accurate to within 1 + O(ε), then 
our sum of estimates approximates the sum of 1/ca values to within O(ε), which in turn 
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approximate the mean E[Xt] to within O(ε). The errors in these approximations multiply, 
so the accuracy of our approximation is (1 + O(ε))O(1), which is just 1 + O(ε). Of course, we 
asked for an ε approximation. To get an ε-accurate estimate instead of an O(ε)-accurate one 
we just use a constant-factor smaller initial ε. Now we can set δ�. We want our estimates 
for 1/ca to be accurate in all the trials we perform. Since we carry out O(mµεδ ) trials, to 
make the union bound work we will set δ� = δ/(mµεδ). This means the probability any trial 
hits a bad estimate from its sub-trials is at most 1/δ. 

One subtlety in this problem was realizing that if one approximated c ≈ ca to within an ε 
bound, then 1/c was also a legitimate 2ε approximation for 1/ca. This is not equivalent to 
asserting (incorrectly) that the inverse of the expectation of a variable is the same as the 
expectation of its inverse, because we are not in fact dealing with an expectation. We are 
simply approximating the value of a quantity, and then inverting that value to obtain an 
approximation for its inverse. 

(d) Let’s compute the expected running time of a trial, measured in terms of	 the number of 
clauses against which we test an assignment. As just discussed, if the result returned by the 
trial is 1/ca then the number of clauses we need to sample is O(m/ca)µεδ . It follows that 
the expected number of clauses we need to sample in one trial is 

O(E[(m/ca)µεδ ])	 = O(mµεδ ) · E[1/ca] 

= O(mµεδ E[Xt]) 

On the other hand, recall that the goal of these trials is to estimate E[Xt], which means that 
we need to carry out about µεδ /E[Xt] trials to do so. It follows that the total work done 
is the product of these two quantities. This product cancels the quantity E[Xt], leaving us 
with a total time of 

O(mµ 2 
εδ ) 

which is essentially linear in the formula size. 

We can improve the µ2 term to µ with a longer analysis. Rather than waiting for µεδ� 

sub-trials to yield satisfied clauses for a sub-trial, we stop as soon as we see one satisfied 
clause and, if we made s samples, we take 1/s as our estimate. The number of sub-trials we 
perform is then negative binomial distribution with mean m/ca, the right value. So we can 
use a Chernoff bound on sums of negative binomial distributions (with different means) to 
argue that we get an accurate estimate. 

Recall that this bound is the number of clause vs. assignment tests we carry out in the 
algorithm. The actual running time needs to take into account the number of variables we 
need to test in a clause, which depends on the formula size. 

(e) (optional) If some clauses in a DNF formula are much larger than others, then the probability 
that they become true is so small compared to the probability other clauses become true 
that we can discard those clauses from the formula without affecting the truth probability 
significantly. Once all clauses are the same size, our argument that we test roughly m clauses 
means that we test a number of variables roughly equal to the total size of the formula. 
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Problem 2 

1. Let	 cA be the coverage of assignment A, h the number of satisfying assignments in the 
disjoint union, and k the number of satisfying assignments. The probability that the 
algorithm outputs a value in a given attempt is 

(1/cA)(cA/h) = k/h. 
A 

Notice that the number of iterations before an assignment is output is geometrically dis­
tributed with parameter p = k/h. The expected time before a “success” is 1/p. But we 
argued previously that k/h > 1/m. Thus the expected time to output a value is O(m). 

2. The probability an assignment A is output in a given trial is 

Pr[A output | A picked] · Pr[A picked]	 = (1/c)(c/h) 

= 1/h 

It follows that the probability assignment A is output in a trial, given that there was an 
output in that trial, is (by the definition of conditional probabilities) 

Pr[stop and output A] 
= (1/h)/(k/h) = 1/k. 

Pr[stop] 

3. When we choose a random assignment	 A (which takes O(m) time) we can estimate cA 

in O(mµε,δ /cA) time as shown in problem 4(c). With probability 1 − δ that estimate is 
within (1 ± ε) of the correct value. Conditioning on that fact, we obtain from (a) and (b) 
that its output probability is within (1 ±O(ε)) of 1/k. By starting with a constant factor 
smaller ε, we can get to a (1 ± ε) accurate probability (and the constant disappears in the 
O-bound), giving us a (ε, δ) approximation scheme. 

Let us now estimate the running time. Consider running the experiment to output an 
assignment. In the process we consider some sequence of assignments A1, A2, . . . , A∞ 

(for simplicity assume that the experiment runs forever, even though we stop at the first 
output). The “expected number of outputs” that we produce from among Ai, . . . , Aj is 
1/cAi + 1/cAj . Of course, as soon as this exceeds 1, the Chernoff bound tells us + · · · 
that we produce at least one output with probability e−1/2, i.e. a constant. So let’s break 
the infinite sequence of trials (assignments) up into “epochs”: the first epoch starts at 
A1 and continues until the inverse coverages sum to 1; then the next epoch starts and 
continues until the inverse coverages sum to 1 again, and so on. In each epoch, we have a 
constant probability of outputting an assignment, so the expected number of epochs until 
we output an assignment is a constant. 

How long do we spend computing coverages in an epoch? O(mµε,δ ( 1/cA)) time, where 
the sum is taken over assignments A in the epoch; this is just O(mµε,δ ). Since we expect 
to evaluate only a constant number of epochs, this is also the expected computation time 
for our whole algorithm. 
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