
�

�

�

�

�

6.856 — Randomized Algorithms

David Karger

Handout #24, December 5th, 2002 — Homework 11 Solutions

Problem 1

(a) Let D be the disjoint union, and N := D|. We will denote by (a, x) ∈ D a particular |
assignment/clause pair in the disjoint union. That is, assignment a satisfies clause x and
is the “clause x” copy of assignment a in the disjoint union. Note that our random sample
chooses any pair (a, x) ∈ D with probability 1/N . It follows that

E[Xt] = (1/N) · (1/ca)N · N ·
(a,c)∈D

= 1/caca ·
a

= 1
a

which is just the number of satisfying assignments, as claimed.

(b) We need to argue that we can estimate E[Xt] to within (1 ± ε) using the desired number
of trials. But observe that Xt is a random variable whose value is bounded in the range
[0, 1]. Thus the generalized Chernoff bound of Homework 2, Problem 6 applies to sums
of independent samples of Xt. Note also that E[Xt] ≥ 1/m since ca ≤ m in all cases. It
follows that the sum of mµεδ samples has expected value at least µεδ , which means (by the
definition of µεδ) that the probability that this sum deviates by more than ε from its mean
is at most δ.

(c) To estimate ca, we will choose random clauses and check if a satisfies them. Note that the
probability that a satisfies a randomly chosen clause is just ca/m. So we can estimate ca

by estimating the probability a random clause satisfies a. We will refer to these random
choices of clauses as “sub-trials” and reserve the word “trial” to refer to choosing a random
assignment and then carrying out a series of sub-trials to estimate its coverage.

We’ll use a δ� that we set later. We will keep choosing clauses until we see µεδ clauses that a
satisfies. We expect to have to choose (m/ca)µεδ clauses to do this. Once we see this many
clauses, we get an estimate c for ca that is accurate to within (1 ± ε) with probability 1 − δ�.
It follows that 1/c = (1 ± 2ε)/ca, so that we have an O(ε)-accurate approximation to 1/ca

with probability 1 − δ�. If each of our estimates of 1/ca is accurate to within 1 + O(ε), then
our sum of estimates approximates the sum of 1/ca values to within O(ε), which in turn

1

approximate the mean E[Xt] to within O(ε). The errors in these approximations multiply,
so the accuracy of our approximation is (1 + O(ε))O(1), which is just 1 + O(ε). Of course, we
asked for an ε approximation. To get an ε-accurate estimate instead of an O(ε)-accurate one
we just use a constant-factor smaller initial ε. Now we can set δ�. We want our estimates
for 1/ca to be accurate in all the trials we perform. Since we carry out O(mµεδ) trials, to
make the union bound work we will set δ� = δ/(mµεδ). This means the probability any trial
hits a bad estimate from its sub-trials is at most 1/δ.

One subtlety in this problem was realizing that if one approximated c ≈ ca to within an ε
bound, then 1/c was also a legitimate 2ε approximation for 1/ca. This is not equivalent to
asserting (incorrectly) that the inverse of the expectation of a variable is the same as the
expectation of its inverse, because we are not in fact dealing with an expectation. We are
simply approximating the value of a quantity, and then inverting that value to obtain an
approximation for its inverse.

(d) Let’s compute the expected running time of a trial, measured in terms of	 the number of
clauses against which we test an assignment. As just discussed, if the result returned by the
trial is 1/ca then the number of clauses we need to sample is O(m/ca)µεδ . It follows that
the expected number of clauses we need to sample in one trial is

O(E[(m/ca)µεδ])	 = O(mµεδ) · E[1/ca]

= O(mµεδ E[Xt])

On the other hand, recall that the goal of these trials is to estimate E[Xt], which means that
we need to carry out about µεδ /E[Xt] trials to do so. It follows that the total work done
is the product of these two quantities. This product cancels the quantity E[Xt], leaving us
with a total time of

O(mµ 2
εδ)

which is essentially linear in the formula size.

We can improve the µ2 term to µ with a longer analysis. Rather than waiting for µεδ�

sub-trials to yield satisfied clauses for a sub-trial, we stop as soon as we see one satisfied
clause and, if we made s samples, we take 1/s as our estimate. The number of sub-trials we
perform is then negative binomial distribution with mean m/ca, the right value. So we can
use a Chernoff bound on sums of negative binomial distributions (with different means) to
argue that we get an accurate estimate.

Recall that this bound is the number of clause vs. assignment tests we carry out in the
algorithm. The actual running time needs to take into account the number of variables we
need to test in a clause, which depends on the formula size.

(e) (optional) If some clauses in a DNF formula are much larger than others, then the probability
that they become true is so small compared to the probability other clauses become true
that we can discard those clauses from the formula without affecting the truth probability
significantly. Once all clauses are the same size, our argument that we test roughly m clauses
means that we test a number of variables roughly equal to the total size of the formula.

2

�

�

Problem 2

1. Let	 cA be the coverage of assignment A, h the number of satisfying assignments in the
disjoint union, and k the number of satisfying assignments. The probability that the
algorithm outputs a value in a given attempt is

(1/cA)(cA/h) = k/h.
A

Notice that the number of iterations before an assignment is output is geometrically dis­
tributed with parameter p = k/h. The expected time before a “success” is 1/p. But we
argued previously that k/h > 1/m. Thus the expected time to output a value is O(m).

2. The probability an assignment A is output in a given trial is

Pr[A output | A picked] · Pr[A picked]	 = (1/c)(c/h)

= 1/h

It follows that the probability assignment A is output in a trial, given that there was an
output in that trial, is (by the definition of conditional probabilities)

Pr[stop and output A]
= (1/h)/(k/h) = 1/k.

Pr[stop]

3. When we choose a random assignment	 A (which takes O(m) time) we can estimate cA

in O(mµε,δ /cA) time as shown in problem 4(c). With probability 1 − δ that estimate is
within (1 ± ε) of the correct value. Conditioning on that fact, we obtain from (a) and (b)
that its output probability is within (1 ±O(ε)) of 1/k. By starting with a constant factor
smaller ε, we can get to a (1 ± ε) accurate probability (and the constant disappears in the
O-bound), giving us a (ε, δ) approximation scheme.

Let us now estimate the running time. Consider running the experiment to output an
assignment. In the process we consider some sequence of assignments A1, A2, . . . , A∞

(for simplicity assume that the experiment runs forever, even though we stop at the first
output). The “expected number of outputs” that we produce from among Ai, . . . , Aj is
1/cAi + 1/cAj . Of course, as soon as this exceeds 1, the Chernoff bound tells us + · · ·
that we produce at least one output with probability e−1/2, i.e. a constant. So let’s break
the infinite sequence of trials (assignments) up into “epochs”: the first epoch starts at
A1 and continues until the inverse coverages sum to 1; then the next epoch starts and
continues until the inverse coverages sum to 1 again, and so on. In each epoch, we have a
constant probability of outputting an assignment, so the expected number of epochs until
we output an assignment is a constant.

How long do we spend computing coverages in an epoch? O(mµε,δ (1/cA)) time, where
the sum is taken over assignments A in the epoch; this is just O(mµε,δ). Since we expect
to evaluate only a constant number of epochs, this is also the expected computation time
for our whole algorithm.

3

