
6.856 — Randomized Algorithms

David Karger 

Handout #4, September 17, 2002 — Homework 1 Solutions 

Problem 1 MR 1.1. 

(a) We rely on the fact that flips are independent, even if biased.	 To try to generate one 
bit, flip the coin twice. If you get heads followed by tails (HT) then output heads. If 
tails followed by heads (TH) output tails. If HH or TT, report failure. 

Conditioned on having succeeded (gotten HT or TH) the probability that you got HT 
is equal to the probability you got TH, so the output you produce is unbiased. 

If you fail, you try again, repeating until you succeed. The probability that you succeed 
in one trial is just 2p(1 − p) (probability of one head and one tail). So the number 
of trials you perform before succeeding has a geometric distribution; its expectation is 
1/[2p(1 − p)]. Since we toss the coin twice at each trial, the expected number of total 
coin tosses is 1/[p(1 − p)]. 

(b) The following solution owes to [Elias72].	 This one is tricky. Any reasonable effort is 
sufficient for full credit. 

Before we tackle the problem itself, let us consider the following scenario: suppose you 
are given a number r drawn uniformly at random from {1, . . . , N}. How many unbiased 
bits can you output from such a sample? The following scheme will turn out to be 
asymptotically optimal: 

Suppose that the binary representation of N is as follows: 

N = αm2m + αm−12
m−1 + · · ·+ α12

1 + α02
0 , 

where αi ∈ {0, 1}, αm = 1, and m = �log N�. 
We assign output strings to the N numbers, so that for every i > 0 with αi = 1, we map 
2i of the numbers to all the binary strings of length i. The exact assignment does not 
matter, but since every input number is equally likely, we are assured that the output 
bits are unbiased and independent random bits. Note that if N is odd, i.e. α0 = 1, one 
of the input numbers will not be assigned to any output – if we encounter it, we output 
nothing. Luckily, this case will become increasingly unlikely as N grows. 

It remains to be seen how many bits we expect to output using this scheme. Due to the 
above construction, if αi = 1 for some i > 0, then we output a length i bit string with 
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probability 2i/N . So the expected output length is equal to 

m� 2i


EN := E [ # bits output ] =
 i · αi · 
N 

i=0 

mm �1 � 
(m − i) · αi · 2i = 

N
m · αi · 2i − 

i=0 i=0 
m

1 � 
= m − (m − i) · αi · 2i 

N 
i=0 

− m ≤ 2m+1We have N ≥ 2m, and (m − i)αi2
i (m − i)2i = 2m+1 . This implies ≤ 

2m+1 

log N ≥ m ≥ EN = m − 2 ≥ log N − 3≥ m − 
2m 

Let us now apply this observation to the problem we really want to solve, extracting bits 
from n biased coin flips. Suppose we flip the coin n times and see k heads. There are 

n different different positions those k heads can take among the n flips (that is, which 
k 

of the k flips came up heads), and each is equally likely. So, using the above scheme, 
nwe can map them to bit sequences with an expected length of about log 
k . Since the 

nprobability that we see k heads is pk (1 − p)n−k , we can conclude that the expected 
k 

number E of output bits is 

n� 
p k (1 − p)n−k 

� 
n 
k 

� 

log 

� 
n 
k 

� 

− 3 ≤ E ≤ 
n� 

p k (1 − p)n−k 

� 
n 
k 

� 

log 

� 
n 
k 

� 

(1) 
k=0 k=0 

To bound this quantity will use the following two facts: 

Fact 1 (Weak law for binomial distributions) For all p ∈ [0, 1], ε > 0 there exists 
n0 ∈ N, such that for all n ≥ n0, a (1 − ε) fraction of all length n sequences of p-biased 
coin flips contain between n(p − ε) and n(p + ε) heads. � 

Fact 2 

1 n 1 1 
lim log = H (p) := p · log + (1 − p) · log � 

n n · p p 1 − pn→∞ 

This second fact follows easily from log n! ≈ n log n – a consequence of Stirling’s Formula; 
see Proposition B.1 in the MR book. 

nThis first fact implies that (1) asymptotically grows like log 
np , 1 which according to 

1More precisely, that 

n n
(1 − ε) · min log 

n(p + α) 
− 3 ≤ E ≤ (1 + ε) · max log 

|α|≤ε |α|≤ε n(p + α) 
. 
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the second fact converges to nH(p),2 which proves that our scheme obtains the optimum 
expected output length. 

(c) This is a (the) classic result from information theory [Shannon48]. The basic idea behind 
the proof is the following. By Fact 1 from part (b), we know that as n becomes large, 
almost all sequences have about np heads in them. So the input can be approximated 

nby just 
np sequences of equal probability. The ‘best’ we can do to get unbiased bits 

is to map all of these sequences to different output strings from some {0, 1}k . Since we 
nonly have 
np sequences to map from, we have that k ≤ log n , which by Fact 2 from 

np 

above implies that k ≤ nH(p) in the limit. 

Problem 2 MR 1.5. 

(a) Let’s partition the unit interval into n intervals Ii of length pi. If we could generate a 
number U chosen uniformly at random from the unit interval, then it would fall into 
interval Ii with probability pi, so we could output item i in that case. Since we don’t 
want to generate the infinitely many bits needed to specify a number in the unit interval, 
we perform a lazy evaluation, generating only as long a prefix of U as we need to be 
certain that U falls in a particular interval Ii (this can be thought of as an application 
of the principle of deferred decision: we generate all the bits of U , but the only examine 
as many as we need to make a decision). 

To decide how many bits of U we will generate/look at, let us consider the probability 
that we will need to generate more than k bits. Suppose we have generated k bits of U , 
call them Uk . Based on Uk , we know that U lies in a particular one of 2k equal-length 
subintervals of the unit interval, call it V . If this subinterval V is contained in one of 
the Ii, then we know that U is contained in Ii and we can stop generating bits. This 
can fail to happen only if an endpoint of some Ii is contained in V . Now note that 
with n intervals Ii, there are only n − 1 interval endpoints. Thus, at most n − 1 of the 
equal-length subintervals V can contain an endpoint. Since V is chosen uniformly at 
random from among the possibilities, the probability this happens is at most (n − 1)/2k . 
Thus the probability that we need more than k bits is at most 1 if k ≤ log n, and at 
most (n − 1)/2k if k > log n. It follows that if R is the number of bits needed, then 

E[R] = Pr[R ≥ r] 
r 

log n + (n − 1)/2r≤ 
r≥log n 

= O(log n) 
2Again, more precisely, we get 

(1 − ε) · min nH(p + α) − 3 ≤ E ≤ (1 + ε) · max nH(p + α) 
|α|≤ε |α|≤ε 

for sufficiently large n. Letting ε tend to 0 gives limn→∞ E/n = H(p). 
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We can actually get a somewhat more sophisticated bound as follows: let us condition on 
the fact that U ∈ Ij . Under this assumption, how many bits of U do we need to reveal (in 
expectation) to know that U ∈ Ij ? Arguing much as above, note that k bits of U specify 
an interval of length 1/2k . Conditioned on the fact that U ∈ Ij , Uk basically specifies an 
interval V that intersects Ij . There are 2k pj such intervals, so the probability that we 
have to generate more bits, which is just the probability that V contains an endpoint of 
Ij , which is roughly 2/(2k pj ). So arguing as above, the expected number of bits needed 
(given that we are in Ij ) is log(1/pj ). It follows that 

E[R] = Pr[Ij ]E[R | Ij ] 
j 

= pj log(1/pj ) 
j 

which is just the entropy of the distribution. This is simply taking MR 1.1 in the opposite 
direction (from unbiased to biased bits). 

(b) Suppose that we have an algorithm using k bits in the worst case to choose uniformly 
from {1, 2, 3}. We can think of this algorithm as a function that, for any sequence of ran­
dom bits of size k, maps to an output — 1, 2, or 3 (the algorithm may not pay attention 
to all k random bits, but we assume it pays attention to no more than these bits). Sup­
pose that r of the k-bit sequences lead the algorithm to output “1.” Then the probability 
that the algorithm outputs “1” with probability a/2k . This number has a finite-length 
base-2 representation (length k to be precise). However, “1” is actually supposed to be 
output with probability 1/3. a number that does not have a finite-length base 2 rep­
resentation. Thus, the algorithm cannot be outputting “1” with the correct probability. 

Many students did not give a complete explanation as to why numbers that don’t have 
a finite base two representation would cause problems. Alot of arguments said the right 
things, but failed to indicate in some way that the argument works independent of the 
scheme. 

(c) Consider the following algorithm: 

1. Set interval [a, b] ← [0, 1] 

2. Repeat for each coin toss: 

2a. If coin comes up heads, [a, b] ← [a, a + p(b − a)] 

2b. If coin comes up tails, [a, b] ← [a + p(b − a), b] 

2c. Output the bits in which the binary expansions of a and b agree (and that have not 
been output before). 

This algorithm recursively subdivides the unit interval [0, 1] based on the coin flips we 
encounter. For each coin flip, the current interval is subdivided in the ratio p : (1 − p); 
if we see heads, we go the left interval, otherwise to the right side. 
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If we read an infinite sequence of coin flips, our interval will eventually converge to a 
single point. We can view the sequence as encoding this particular point x. Our output 
is the binary representation of x: as our interval [a, b] becomes smaller, we output the 
digits of x as we get to know them (since the lower bound a and the upper bound b agree 
on them). 

During the execution of this algorithm, the size of each interval [a, b] is equal to the prob­
ability of actually ending up in it. Therefore, the sequence is equally likely to converge 
to any point in [0, 1]. Thus, the bits that are output are unbiased and independent. 

While this scheme is conceptually simpler than the one from problem 1b, its analysis 
involves a combination of the techniques we used for problems 1b and 2a. 

Suppose we read n biased coin flips, where n is sufficiently large.3 What is the expected 
number of bits that were output? Let ε > 0. Using Fact 1 from problem 1b, we know 
that with probability at least (1 − ε), the input sequence has between n(p − ε) and 
n(p + ε) heads. 

nBy choosing n sufficiently large, we can assume that any 
np of these sequences con­

tribute only an insignificant weight, i.e. (assuming p ≥ 1/2) 

n 
pnp+ε(1 − p)n(1−p)−ε (2)≤ ε 

np 

Now we can determine the probability that we will not output at least n · H(p) bits after 
these n steps. Given some interval [a, b], we will obviously output less than nH(p) bits 
iff the binary representations of a and b differ in one or more of their first nH(p) digits. 
This is the case if there is some number of the form 

m � � 

2�nH(p)� , m ∈ 0, 1, . . . , 2�nH(p)� − 1 

within the interval [a, b]. Since all of our intervals are disjoint, at most 2nH(p) of them can 
ncontain any of these ‘bad’ numbers. By Fact 2 from problem 1b, we have 2nH(p) ≈ for 
np 

large enough n – but we already know from (2) that this many intervals only contribute 
an insignificant weight. Thus, the probability that we actually output at least nH(p) 
bits, is at least (1 − ε) − ε = 1 − 2ε. By letting ε tend to 0, this shows the claim. 

Problem 3 Packets in a stream. 

We use the following algorithm: 

•	 Save the first k packets you see. 

•	 After this, for the n-th packet, with probability k/n save this packet at a random 
position in our storage (jettisoning the packet that was already there). 

3Note that if we stopped our algorithm after n steps, the output bits would not be unbiased. In this 
problem we are only interested in the rate with which the algorithm (that necessarily runs forever) produces 
output bits. 
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We claim that at any point our storage will contain a random sample from the already 
seen packets. We give a proof by induction, the base case n ≤ k being trivial. So assume that 
after n − 1 ≥ k steps we have a random sample among the first n − 1 packets. We have to 
show that after seeing (and possibly storing) the n-th packet, we now have a random sample 
among the first n packets. We will identify the n packets with the numbers {1, . . . , n} for 
the following. � � � � 

nFirst, we note that n−1 / 
k = k/n of k-element subsets of {1, . . . , n} contain the number 

k−1 
n. This implies that we can choose a random k-element subset from {1, . . . , n} as follows: � 

Subset = 
{n} ∪ “random k − 1-element subset of {1, . . . , n− 1}”, 
“random k-element subset of {1, . . . , n− 1}”, 

with probability k 
n 

with probability 1 − k 
n 

But this is exactly what our algorithm does: with probability k/n it includes n in the sample. 
The other elements are chosen by omitting a random element from (by induction hypothesis) 
a random k-element subset of {1, . . . , n− 1}, which yields a random (k − 1)-element subset 
of {1, . . . , n − 1}. And with probability 1 − k/n, we just leave the sample like it is, i.e. a 
random k-element subset of {1, . . . , n − 1}. This implies that after n steps we are still left 
with a random sample. 

Note that to show that we have a random sample, it is not enough to prove that each 
packet is in the sample with probability k/n. One also has to show that these probabilities 
are independent. This was a very common mistake. 
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