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Linear Programming 
Lecturer: Michel X .  Goemans 

An Introduction to Linear Programming 

Linear programming is a very important class of problems, both algorithmically and 
combinatorially. Linear programming has many applications. From an algorithmic 
point-of-view, the simplex was proposed in the forties (soon after the war, and was 
motivated by military applications) and, although it has performed very well in prac- 
tice, is known to run in exponential time in the worst-case. On the other hand, since 
the early seventies when the classes P and NP were defined, it was observed that linear 
programming is in N Pn co-NP although no polynomial- t ime algorithm was known at 
that time. The first polynomial-time algorithm, the ellipsoid algorithm, was only dis- 
covered at the end of the seventies. Karmarkar's algorithm in the mid-eighties lead to 
very active research in the area of interior-point methods for linear programming. We 
shall present one of the numerous variations of interior-point methods in class. From 
a combinatorial perspective, systems of linear inequalities were already studied at the 
end of the last century by Farkas and Minkovsky. Linear programming, and especially 
the notion of duality, is very important as a proof technique. We shall illustrate its 
power when discussing approximation algorithms. We shall also talk about network 
flow algorithms where linear programming plays a crucial role both algorithmically 
and combinatorially. For a more in-depth coverage of linear programming, we refer 
the reader to [I, 4, 7, 8, 51. 

A linear program is the problem of optimizing a linear objective function in the 
decision variables, XI . . . xn, subject to linear equality or inequality constraints on the 
xi's. In standard form, it is expressed as: 

Min C ~ j x j  (objective function) 

subject to: 
n 

(constraints) 

j = 1.. .n (non-negativity constraints) 

where {aii, bi, cj) are given. 
A linear program is expressed more conveniently using matrices: 

Ax = b
mincTx subject to 0 



where 

Basic Terminology 

Definition 1 If x satisfies Ax = b, x 2 0 ,  then x is feasible. 

Definition 2 A linear program (LP) is feasible if there exists a feasible solution, 
otherwise it is said to be infeasible. 

Definition 3 An optimal solution x* is a feasible solution s.t. cTx*= min{cTx : 
Ax= b , x 2 0 ) .  

Definition 4 LP is unbounded (from below) if VX E R, 3 a feasible x* s.t. cTx*5 A.  

Equivalent Forms 

A linear program can take on several forms. We might be maximizing instead of 
minimizing. We might have a combination of equality and inequality contraints. 
Some variables may be restricted to be non-positive instead of non-negative, or be 
unrestricted in sign. Two forms are said to be equivalent if they have the same set of 
optimal solutions or are both infeasible or both unbounded. 

1. A maximization problem can be expressed as a minimization problem. 

maxcTx H min --cTz 

2. An equality can be represented as a pair of inequalities. 



3. By adding a slack variable, an inequality can be represented as a combination 
of equality and non-negat ivit y constraints. 

T Tai x < bi H a; X + Si = b;, Si 2 0. 

4. Non-positivity constraints can be expressed as non-negativity constraints. 

To express xj 5 0, replace xj everywhere with -yj and impose the condition 

Yj> 0.-

5. x may be unrestricted in sign. 

If x is unrestricted in sign, i.e. non-positive or non-negative, everywhre replace 
xj by xf - xy , adding the constraints x:, xy 2 0. 

In general, an inequality can be represented using a combination of equality and 
non-negativity constraints, and vice versa. 

Using these rules, min {cTx s.t. Ax 2 b) can be transformed into min {cTx+ - cTx-

s.t. Axf -Ax- - I s  = b, x+,x-, s 2 0). The former LP is said to be in canonical 
form, the latter in standard form. 

Conversely, an LP in standard form may be written in canonical form. min {cTx 

s.t. Ax = b, s 2 0) is equivalent to min{cTx s.t. Ax 2 b, -Ax 2 -b, I x  2 0).

( ) ( -h )This may be rewritten as A'X 2 b', where A' = - and b = . 

Example 

Consider the following linear program: 

3x1 - x2 2 0
min x2 subject to 

21 + x2 2 6 

The optimal solution is (4,2) of cost 2 (see Figure 1). If we were maximizing x2 
instead of minimizing under the same feasible region, the resulting linear program 
would be unbounded since x2 can increase arbitrarily. From this picture, the reader 
should be convinced that, for any objective function for which the linear program is 
bounded, there exists an optimal solution which is a "corner" of the feasible region. 
We shall formalize this notion in the next section. 
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Figure 1: Graph representing primal in example. 

An example of an infeasible linear program can be obtained by reversing some of 
the inequalities of the above LP: 

The Geometry of L P  
Let P = { x  :Ax = b, x 2 0) & Rn. 

Definition 5 x is a vertex of P if By # 0 s.t. x + y,  x - y E P.  

Theorem 1 Assume min{cTx :x E P )  is finite, then V x  E P, 3 a vertes x' such that 
cTx' 5 cTx. 

Proof: 
If x is a vertex, then take x' = x. 
If x is not a vertex, then, by definition, 39 # O s.t. x + y ,  x - y E P. Since 

A ( x +  y )  = band A ( x  - y )  = b, Ay = 0. 
WLOG, assume cTy 5 0 (take either y or - y ) .  If cTy = 0, choose y such that 3 j  

s.t. yj < 0. Since y # 0 and cTy = =c ~ ( - ~ )0, this must be true for either y or -y. 
Consider x + X y ,  X > 0. cT(x+ Xy) = cTx + XcTy 5 cTx,  since cTy is assumed 

non-positive. 



Figure 2: A polyhedron with no vertex. 

Case 1 3j  such that y j  < 0 

As X increases, component j decreases until x + Xy is no longer feasible. 

Choose X = min~j:yi<ol{~j/-yj}= xk/-yk . This is the largest X such that 
x + Xy 2 0. Since Ay = 0, A(x + Xy) = Ax + XAy = Ax = b. So x + Xy E P, 
and moreover x + Xy has one more zero component, (x + Xy),, than x. 

Replace x by x + Xy. 

Case 2 y j  2 O b ' j  

By assumption, cTy < 0 and x + Xy is feasible for all X 2 0, since A(x + Xy) = 
Ax +XAy = Ax = b, and x +Xy 2 x 2 0. But cT(x+Xy)  = cTx+XcTy + -co 
as X +m, implying LP is unbounded, a contradiction. 

Case 1 can happen at most n times, since x has n components. By induction on 
the number of non-zero components of x, we obtain a vertex x'. 

Remark: The theorem was described in terms of the polyhedral set P = {x : 
Ax = b : x 2 0). Strictly speaking, the theorem is not true for P = {x : Ax 2 
b ) .  Indeed, such a set P might not have any vertex. For example, consider P = 

{(xl,x2) : 0 5 2 2  5 1) (see Figure 2). This polyhedron has no vertex, since for any 
x E P, we h a v e x + y ,  x - y  E P, where y = (1, 0). It can be shown that P has a 
vertex iff Rank(A) = n. Note that, if we transform a program in canonical form into 
standard form, the non-negativity constraints imply that the resulting matrix A has 
full column rank, since 

Rank [ -:] = n 



Corollary 2 If min{cTx : Ax = b, x > 0) is finite, There exists an optimal solution, 
x*, which is a vertex. 

Proof: 
Suppose not. Take an optimal solution. By Theorem 1 there exists a vertex 

costing no more and this vertex must be optimal as well. 

Corollary 3 If P = {x : Ax = b, x 2 0) # 0, then P has a vertex. 

Theorem 4 Let P = {x : Ax = b, x 2 0). For x E P,  let Ax be a submatrix of A 
corresponding to j s.t. xj > 0. Then x is a vertex iff Ax has linearly independent 
columns. (i.e. Ax has full column rank.) 

2 1 3 0  
Example A =  [ o7 3 2 5 ]1 x =  [ i ]A x =  [!!I ,  andxisaver tex .  

Proof: 

Show T i  + i i i .  

Assume x is not a vertex. Then, by definition, 3 y  # 0 s.t. x + y ,  x - y E P. 
Let Ay be submatrix corresponding to non-zero components of y. 

As in the proof of Theorem 1, 

Therefore, A, has dependent columns since y # 0. 

Moreover, 

+ y j  = 0 whenever xj  = 0. 
x - y > 0 

Therefore Ay is a submatrix of A,. Since Ay is a submatrix of Ax, Ax has 
linearly dependent columns. 

..
Show 1 2 2  + l i .  

Suppose Ax has linearly dependent columns. Then 3y s.t . Axy = 0, y # 0. 
Extend y to Rn by adding 0 components. Then 3y E Rn s.t. Ay = 0, y # 0 
and y j  = 0 wherever z j  = 0. 

Consider y' = Xy for small X > 0. Claim that x + y', x - y' E P, by argument 
analogous to that in Case 1 of the proof of Theorem 1, above. Hence, x is not 
a vertex. 



Bases 

Let x be a vertex of P = { x  : A x  = b, x > 0). Suppose first that [{j: x j  > O)I = m 
(where A is m x n). In this case we denote B = {j: xj > 0). Also let AB = A,; we 
use this notation not only for A and B, but also for x and for other sets of indices. 
Then AB is a square matrix whose columns are linearly independent (by Theorem 
4), so it is non-singular. Therefore we can express x as xj = 0 if j $ B, and since 
ABxB = b, it follows that X B  = ~ i ' b .The variables corresponding to B will be called 
basic. The others will be referred to as nonbasic. The set of indices corresponding to 
nonbasic variables is denoted by N = (1,. . . ,n} -B. Thus, we can write the above 
as x~ = Aklb  and X N  = 0. 

Without loss of generality we will assume that A has full row rank, rank(A) = m. 
Otherwise either there is a redundant constraint in the system A x  = b (and we can 
remove it), or the system has no solution at all. 

If 1 {j: xj > 0) I < m, we can augment A, with additional linearly independent 
columns, until it is an m x m submatrix of A of full rank, which we will denote AB. 
In other words, although there may be less than m positive components in x ,  it is 
convenient to always have a basis B such that IBI = m and AB is non-singular. This 
enables us to always express x as we did before, XN = 0, X B  = Ai'b.  

Summary x is a vertex of P iff there is B (1,.. . ,n) such that IBI = m and 

1. X N  = 0 for N = (1,. . .  ,n} -B 

2. AB is non-singular 

In this case we say that x is a basic feasible solution. Note that a vertex can have 
several basic feasible solution corresponding to it (by augmenting {j : xj > 0) in 
different ways). A basis might not lead to any basic feasible solution since ~ i ' bis 
not necessarily nonnegative. 

Example: 



We can select as a basis B = {I,2). Thus, N = (3) and 

Remark. A crude upper bound on the number of vertices of P is (:). This number 

is exponential (it is upper bounded by nm). We can come up with a tighter approx- 

imation of (";?), though this is still exponential. The reason why the number is 

much smaller is that most basic solutions to the system Ax = b (which we counted) 
are not feasible, that is, they do not satisfy x 2 0. 

The Simplex Method 
The Simplex algorithm [Dantzig,l947] [2] solves linear programming problems by 
focusing on basic feasible solutions. The basic idea is to start from some vertex v and 
look at the adjacent vertices. If an improvement in cost is possible by moving to one 
of the adjacent vertices, then we do so. Thus, we will start with a bfs corresponding 
to a basis B and, at each iteration, try to improve the cost of the solution by removing 
one variable from the basis and replacing it by another. 

We begin the Simplex algorithm by first rewriting our LP in the form: 

min 	 cgxg + CNXN 

s.t. 	 ABxB+ ANxN= b 
X B , X N  2 0 

Here B is the basis corresponding to the bfs we are starting from. Note that, for 
any solution x, XB = Ajjlb -AilANxN and that its total cost, cTx can be specified 
as follows: 

We denote the reduced cost of the non-basic variables by EN, EN = CN -cBAilAN, 
i.e. the quantity which is the coefficient of X N  above. If there is a j E N such that 



E j  < 0, then by increasing xj  (up from zero) we will decrease the cost (the value of 
the objective function). Of course XB depends on x ~ ,  and we can increase xj  only as 
long as all the components of XB remain positive. 

So in a step of the Simplex method, we find a j E N such that E; < 0, and increase 
it as much as possible while keeping xe 2 0. It is not possible any more to increase 
xj, when one of the components of x~ is zero. What happened is that a non-basic 
variable is now positive and we include it in the basis, and one variable which was 
basic is now zero, so we remove it from the basis. 

If, on the other hand, there is no j E N such that E; < 0, then we stop, and 
the current basic feasible solution is an optimal solution. This follows from the new 
expression for cTx since XN is nonnegative. 

Remarks: 

1. Note that 	some of the basic variables may be zero to begin with, and in this 
case it is possible that we cannot increase xj  at all. In this case we can replace 
say j by k in the basis, but without moving from the vertex corresponding to 
the basis. In the next step we might replace k by j, and be stuck in a loop. 
Thus, we need to specify a "pivoting rule" to determine which index should 
enter the basis, and which index should be removed from the basis. 

2. 	While many pivoting rules (including those that are used in practice) can lead 
to infinite loops, there is a pivoting rule which will not (known as the minimal 
index rule - choose the minimal j and k possible [Bland, 19771). This fact was 
discovered by Bland in 1977. There are other methods of "breaking ties" which 
eliminate infinite loops. 

3. 	There is no known pivoting rule for which the number of pivots in the worst 
case is better than exponential. 

4. 	The question of the complexity of the Simplex algorithm and the last remark 
leads to the question of what is the length of the shortest path between two 
vertices of a convex polyhedron, where the path is along edges, and the length 
of the path in measured in terms of the number of vertices visited. 

Hirsch Conjecture: For m hyperplanes in d dimensions the length of the 
shortest path between any two vertices of the arrangement is at most m - d. 

This is a very open question - there is not even a polynomial bound proven 
on this length. 

On the other hand, one should note that even if the Hirsch Conjecture is true, 
it doesn't say much about the Simplex Algorithm, because Simplex generates 
paths which are monotone with respect to the objective function, whereas the 
shortest path need not be monotone. 



- - 

Recently, Kalai (and others) has considered a randomized pivoting rule. The 
idea is to randomly permute the index columns of A and to apply the Simplex 
method, always choosing the smallest j possible. In this way, it is possible to 
show a subexponential bound on the expected number of pivots. This leads to 
a subexponential bound for the diameter of any convex polytope defined by m 
hyperplanes in a d dimension space. 

The question of the existence of a polynomial pivoting scheme is still open 
though. We will see later a completely different algorithm which is polynomial, 
although not strongly polynomial (the existence of a strongly polynomial algo- 
rithm for linear programming is also open). That algorithm will not move from 
one vertex of the feasible domain to another like the Simplex, but will confine 
its interest to points in the interior of the feasible domain. 

A visualization of the geometry of the Simplex algorithm can be obtained from 
considering the algorithm in 3 dimensions (see Figure 3). For a problem in the form 
min{cTx : Ax 5 b) the feasible domain is a polyhedron in R3,and the algorithm 
moves from vertex to vertex in each step (or does not move at all). 

/ Objective 
function 

Figure 3: Traversing the vertices of a convex body (here a polyhedron in R3). 



When is a Linear Program Feasible ? 

We now turn to another question which will lead us to important properties of linear 
programming. Let us begin with some examples. 

We consider linear programs of the form A x  = b, x 2 0. As the objective function 
has no effect on the feasibility of the program, we ignore it. 

We first restrict our attention to systems of equations (i.e. we neglect the non- 
negativity constraints) . 

Example: Consider the system of equations: 
21 + 2 2  + 2 3  = 6 


2x1 + 3x2 + 2 3  = 8 

2x1 + x2 + 3x3 = 0 


and the linear combination 

-4 x X I  + + = 6
2 2  ~3 

1 x 2x1 + 3x2 + x3 = 8 

1 x 2x1 + x2 + 3x3 = 0 


The linear combination results in the equation 


which means of course that the system of equations has no feasible solution. 
In fact, an elementary theorem of linear algebra says that if a system has no 

solution, there is always a vector y such as in our example ( y  = (-4,1,1)) which 
proves that the system has no solution. 

Theorem 5 Exactly one of the following is true for the system A x  = b: 

I .  There is x such that A x  = b. 

2. There is y such that ATy  = 0 but yTb  = 1. 

This is not quite enough for our purposes, because a system can be feasible, 
but still have no non-negative solutions x 2 0. Fortunately, the following lemma 
establishes the equivalent results for our system A x  = b, x 2 0. 

Theorem 6 (Farkas' Lemma) Exactly one of the following is true for the system 
A x = b , x > O :  

1. There is x such that A x  = b, x 2 0.  

2. There is y such that 2 O but bTy < 0.  

LP-11 



Proof: 
We will first show that the two conditions cannot happen together, and then than 

at least one of them must happen. 
Suppose we do have both x and y as in the statement of the theorem. 

but this is a contradiction, because yTb < 0, and since x 2 O and ATy 2 0, so 
aTATy2 0. 

The other direction is less trivial, and usually shown using properties of the Sim-
plex algorithm, mainly duality. We will use another tool, and later use Farkas' Lemma 
to prove properties about duality in linear programming. The tool we shall use is the 
Projection theorem, which we state without proof: 

Theorem 7 (Projection Theorem) Let K be a closed convex (see Figure 4)  non-
empty set in I tn ,  and let b be any point in Rn. The projection of b onto K is a point 
p E K that minimizes the Euclidean distance ilb - pll. Then p has the property that 
for all t E K ,  ( z  -p)T(b - p )  5 0 (see Figure 5) non-empty set. 

not convex convex 


Figure 4: Convex and non-convex sets in R2. 

We are now ready to prove the other direction of Farkas' Lemma. Assume that 
there is no x such that Ax = b, x 2 0; we will show that there is y such that ATy 2 0 
but yTb < 0. 

Let K = {Ax :s 2 0) 2 Rm ( Ais an m x n matrix). K is a cone in IWm and it is 
convex, non-empty and closed. According to our assumption, As = b, x 2 0 has no 
solution, so b does not belong to K. Let p be the projection of b onto K. 

Since p E K ,  there is a w 2 0 such that Aw = p. According to the Projection 
Theorem, for all z E EK, ( ~ - ~ ) ~ ( b - ~ )  AX-^)^(^-^) 5 05 0 That is, for all x 2 0 

W e define y =p- b, which implies (Ax- p ) T y  2 0. Since Aw = p, (Az 2-A W ) ~ ~  
0. (x -w ) ~ ( A ~ ~ )2 0 for all x 2 0 (remember that w was fixed by choosing 6 ) .  



Figure 5: The Projection Theorem. 

vector with a 1in the i-th row). Note that x 

is non-negative, because w 2 0. 
This will extract the i-th column of A, so we conclude that the i-th component of 

ATy is non-negative (ATy)i2 0, and since this is true for all i ,  ATy 2 0. 
Now it only remains to show that yTb < 0. 
ytb = ( p - ~ ) ~ y= pTy-yTy Since AX-^)^^ 2 0 for all x 2 0, taking x to be zero 

shows that 5 0. Since b @ I(, y = p- b # 0, so yTy > O. So yTb = pTy -yTy < 0. 

Using a very similar proof one can show the same for the canonical form: 

Theorem 8 Exactly one of the following is true for the system Ax 5 b: 

I .  There is x such that As 5 b. 

2. There is y 2 0 such that ATy = 0 but yTb < 0. 

The intuition behind the precise form for 2. in the previous theorem lies in the proof 
that both cannot happen. The contradiction 0 = Ox = (yTA)x= yT(Ax)= yTb < 0 
is obtained if ATy = O and yTb < 0. 



Duality 

Duality is the most important concept in linear programming. Duality allows to 
provide a proof of optimality. This is not only important algorithmically but also it 
leads to beautiful combinatorial statements. For example, consider the statement 

In a graph, the smallest number of edges in a path between two spec- 
ified vertices s and t is equal to the maximum number of s - t cuts (i.e. 
subsets of edges whose removal disconnects s and t ) .  

This result is a direct consequence of duality for linear programming. 
Duality can be motivated by the problem of trying to find lower bounds on the 

value of the optimal solution to a linear programming problem (if the problem is 
a maximization problem, then we would like to find upper bounds). We consider 
problems in standard form: 

min cTx 
set. A x = b  

$ 2 0  

Suppose we wanted to obtain the best possible upper bound on the cost function. 
By multiplying each equation A,z = b, by some number 9, and summing up the 
resulting equations, we obtain that yTAx = bTy. if we impose that the coefficient of 
x j  in the resulting inequality is less or equal to cj then bTy must be a lower bound on 
the optimal value since xj is constrained to be nonnegative. To get the best possible 
lower bound, we want to solve the following problem: 

max bT 
s.t. A T y < c  

This is another linear program. We call this one the dual of the original one, called 
the primal. As we just argued, solving this dual LP will give us a lower bound on the 
optimum value of the primal problem. Weak duality says precisely this: if we denote 
the optimum value of the primal by z ,  z = min cTx, and the optimum value of the 
dual by w, then w 5 z.  We will use Farkas' lemma to prove strong duality which says 
that these quantities are in fact equal. We will also see that, in general, the dual of 
the dual is the problem. 

Example: 
x = min XI + 2x2 + 4x3 

x1 + x2 + 2x3 = 5 
2x1 + xz + 3x3 = 8 

The first equality gives a lower bound of 5 on the optimum value z ,  since xl + 2x2+ 
4x3 2 x1 + x2 + 2x3 = 5 because of nonnegativity of the xi. We can get an even 



better lower bound by taking 3 times the first equality minus the second one. This 
gives x1 + 2x2 + 3x3 = 7 5 XI + 2x2 + 4x3, implying a lower bound of 7 on z. For 

x = ( ), the objective function is precisely 7, implying optimalit. The mechanism 

of generating lower bounds is formalized by the dual linear program: 

y l  represents the multiplier for the first constraint and y2 the multiplier for the second 
constraint, This LP's objective function also achieves a maximum value of 7 at y = 

( ? I ) *  
We now formalize the notion of duality. Let P and D be the following pair of dual 

linear programs: 

T
(P) z = min{c x : Ax = b, x 2 0) 

(D) w=max{bTy :ATy<c) .  

(P)is called the primal linear program and (D) the dual linear program. 
In the proof below, we show that the dual of the dual is the primal. In other 

words, if one formulates (D) as a linear program in standard form (i.e. in the same 
form as (P)),its dual D(D) can be seen to be equivalent to the original primal (P) .  
In any statement, we may thus replace the roles of primal and dual without affecting 
the statement. 
Proof: 

The dual problem D is equivalent to mini-bTy : ATy+ I s  = c, s 2 0). Changing 
forms we get mini-bTy+ +bTy- : ATy+-ATy- +I s  = c ,  and y t ,  y-, s 2 0). Taking 
the dual of this we obtain: maxi-cTx : A(-x) < -b, -A(-x) < b, I(-x) < 0). But 
this is the same as min{cTx : Ax = b, x 2 0) and we are done. 

We have the following results relating w and z. 

Lemma 9 (Weak Duality) z 2 w. 

Proof: 
Suppose x is primal feasible and y is dual feasible. Then, cTx 2 yTAx = yTb, 

thus z = min{cTx: Ax = b,x 2 0) 2max{bTy :ATy < c) = w. 
From the preceding lemma we conclude that the following cases are not possible 

(these are dual statements): 

1. P is feasible and unbounded and D feasible. 



2. P is feasible and D is feasible and unbounded. 

We should point out however that both the primal and the dual might be infeasible. 
To prove a stronger version of the weak duality lemma, let's recall the following 

corollary of Farkas' Lemma (Theorem 8): 

Corollary 10 Exactly one of the following is true: 

1. 32' : A'x' < b'. 

2- 3Y' 2 0 : (A')Ty' = 0 and (b')Tyf < 0. 

Theorem 11 (Strong Duality) If P or D is feasible then z = w. 

Proof: 
We only need to show that z 5 w. Assume without loss of generality (by duality) 

that P is feasible. If P is unbounded, then by Weak Duality, we have that z = w = 
-00. Suppose P is bounded, and let x* be an optimal solution, i.e. Ax* = b, x* 2 0 
and cTx* = Z .  We claim that 3 y  s.t. ATy 5 c and bTy 2 z .  If so we are done. 

Suppose no such y exists. Then, by the preceding corollary, with A' = 

b t =  ( ) ,  x t =  y ,  y t =  ( ) ,  3s > 0, X 2 0  such that 
- 2  

Ax = Xb 

and cTx<Xz. 

We have two cases 

Case 1: X # 0. Since we can normalize by X we can assume that X = 1. This 
means that 32 2 0 such that Ax = b and cTx < Z .  But this is a contradiction 
with the optimality of x*. 

Case 2: X = 0. This means that 32 2 0 such that Ax = 0 and cTx < 0. If this 
is the case then 'v'p 2 0, x* + px is feasible for P and its cost is cT(x*+ px) = 
cTx*+ p(cTx) < Z ,  which is a contradiction. 

Rules for Taking Dual Problems 

If P is a minimization problem then D is a maximization problem. If P is a maxi-
mization problem then D is a minimization problem. In general, using the rules for 
transforming a linear program into standard form, we have that the dual of (P) :  

T Tz = min c, x1 + c, x2+ c:x3 



A1121 + A1222 + A1323 = b l  

A2121 + A2222 + A23~3 > b2 

A3121 + A3222 + A3353 5 b3 

x, 2 0 , x2 5 0 , x3 UIS 

(where UIS means "unrestricted in sign" to emphasize that no constraint is on the 
variable) is (D) 

T w = =ax b, y1 + bTy2 + bTy3 
s.t. 

Complementary Slackness 

Let P and D be 

(P) z = min{cTx : Ax = b, x 2 0) 

and let x be feasible in P, and y be fesible in D. Then, by weak duality, we know that 
cTx > bTy. We call the difference cTx - bTy the duality gap. Then we have that the 
duality gap is zero iff x is optimal in P, and y is optimal in D. That is, the duality 
gap can serve as a good measure of how close a feasible x and y are to the optimal 
solutions for P and D. The duality gap will be used in the description of the interior 
point method to monitor the progress towards optimality. 

It is convenient to write the dual of a linear program as 

w = max{bTy : ATy + s = c for some s 2 0) 


Then we can write the duality gap as follows: 


since ATy + s = C. 

The following theorem allows to check optimality of a primal and/or a dual solu- 
tion. 



Theorem 12 (Complementary Slackness) 
Let x*, (y*, s*) be feasible for (P),(D) respectively. The following are equivalent: 

1. x* is an optimal solution to (P)and (y*,s*) is an optimal solution to (D). 

4. If s j  > 0 then x j  = 0. 

Proof: 
Suppose (1)holds, then, by strong duality, cTx*= bTy*. Since c = ATy*+ s* and 

Ax* = b, we get that (y*)TAx*+ ( s * ) ~ x *= ( x * ) ~ A ~ ~ * ,and thus, ( s * ) ~ x *= 0 (i.e (2) 
holds). It follows, since xJ, s* > 0, that xjs; = 0, 'ij = 1, . . . ,n (i.e. (3) holds).

3 ,
Hence, if s j  > 0 then x j  = 0, 'v' 3 = 1,. . . ,n (i.e. (4) holds). The converse also holds, 
and thus the proof is complete. 

In the example of section 9, the complementary slackness equations corresponding 
to the primal solution x = (3,2,o ) ~would be: 

Note that this implies that y l  = 3 and y2 = -1. Since this solution satisfies the 
other constraint of the dual, y is dual feasible, proving that x is an optimum solution 
to the primal (and therefore y is an optimum solution to the dual). 

Size of a Linear Program 

11.1 Size of the Input 

If we want to solve a Linear Program in polynomial time, we need to know what 
would that mean, i.e. what would the size of the input be. To this end we introduce 
two notions of the size of the input with respect to which the algorithm we present 
will run in polynomial time. The first measure of the input size will be the size of 
a LP, but we will introduce a new measure L of a LP  that will be easier to work 
with. Moreover, we have that L 5 size(LP), so that any algorithm running in time 
polynomial in L will also run in time polynomial in size(LP). 

Let's consider the linear program of the form: 

min cTx 
s.t. 

Ax = b 
x > o  



where we are given as inputs the coefficients of A (an rn x n matrix), b (an rn x 1 
vector), and c (an n x 1vector), whith rationial entries. 

We can further assume, without loss of generality, that the given coefficients are 
all integers, since any LP with rational coefficients can be easily transformed into an 
equivalent one with integer coefficients (just multiply everything by 1. c. d. ). In the 
rest of these notes, we assume that A, b, c have integer coefficients. 

For any integer n, we define its size as follows: 

where the first 1stands for the fact that we need one bit to store the sign of n, size(n) 
represents the number of bits needed to encode n in binary. Analogously, we define 
the size of a p x 1vector d, and of a p x 1 matrix M as follows: 

We are then ready to talk about the size of a LP. 

Definition 6 (Size of a linear program) 

A more convenient definition of the size of a linear program is given next. 

Definition 7 

where 

det  = 
a 

m;x(l det (A') I )  

and A' is any square submatrix of A. 

Proposition 13 L < size(LP), b'A, b, c .  

Before proving this result, we first need the following lemma: 

Lemma 14 I .  If n E Z then In1 5 2s"e(n)-1 - 1.  
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2. If v E Zn then llvll 5 llvlll 5 2""""(")-" - 1. 

3. If A E Znxn then ldet(A)I 5 2s"e(A)-n2- 1. 

Proof: 

1. By definition. 

n n n 

2- 1+ llvll I1+ 1 1 ~ 1 1 1  = 1+C Ivil 5 n(l+lvil) 5 n 2size(vi )-I -- 2size(v)-n where 
i=l i=l i=l 


we have used I. 


3. Let al,  . . . ,an be the columns of A. Since idet (A)I represents the volume of the 
parallelepiped spanned by al, . . . ,a,, we have 

Hence, by 2, 

We now prove Proposition 13. 
Proof: 

If B is a square submatrix of A then, by definition, size(B) 5 size(A). Moreover, 
by lemma 14, 1+ Idet (B)  I 5 2s"e(B)-1. Hence, 

Let v E Zp.  Then size(v) 2 size(maxj 1vj I )  +p - 1= [lo&+ maxj 1vjl)l +p. Hence, 

Combining equations (1) and (2), we obtain the desired result. 

Remark 1 detmax* bmax* cmax * 2"+" < 2L, since for any integer a, 2size(n)> 1a1. 

In what follows we will work with L as the size of the input to our algorithm. 
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11.2 Size o f t h e  Output 

In order to even hope to solve a linear program in polynomial time, we better make 
sure that the solution is representable in size polynomial in L. We know already that 
if the LP  is feasible, there is at least one vertex which is an optimal solution. Thus, 
when finding an optimal solution to the LP, it makes sense to restrict our attention 
to vertices only. The following theorem makes sure that vertices have a compact 
representation. 

Theorem 15 Let x be a vertex of the polyhedron defined by Ax = b, x > 0. Then, 

where pi (i = 1,.. . ,n ) ,  q E N, 

and 

Proof: 
Since s is a basic feasible solution, 3 a basis B such that XB = ~ ~ l band XN = 0. 

Thus, we can set pj = 0, V j E N ,  and focus our attention on the X ~ ' Ssuch that 
j E B. We know by linear algebra that 

where cof (AB) is the cofactor matrix of AB. Every entry of AB consists of a deter-
minant of some submatrix of A. Let q = Idet(AB)1 ,  then q is an integer since AB has 
integer components, q > 1 since AB is invertible, and q 5 detmax < 2L. Finally, note 
that PB = ~ X B= Icof ( A ~ ) b l ,thus pi 5 Cy=lI C O ~ (A~)i~l lbj15 m detmax bmax < 2L. 

Complexity of linear programming 

In this section, we show that linear programming is in NPn co-NP. This will follow 
from duality and the estimates on the size of any vertex given in the previous section. 
Let us define the following decision problem: 

Definition 8 ( L P )  
Input: Integral A, b, c, and a rational number A, 
Question: Is min{cTx : Ax = b, x 2 0) 5 A? 



Theorem 16 LP E NP n co-NP 

Proof: 
First, we prove that LP E NP. 
If the linear program is feasible and bounded, the "certificate" for verification of 

instances for which min{cTx : Ax = b, x 2 0) 5 A is a vertex x' of {Ax = b, x 2 0) 
s.t. cTx' 5 A. This vertex x' always exists since by assumption the minimum is finite. 
Given x', it is easy to check in polynomial time whether Ax' = b and x' 2 0. We also 
need to show that the size of such a certificate is polynomially bounded by the size 
of the input. This was shown in section 11.2. 

If the linear program is feasible and unbounded, then, by strong duality, the dual 
is infeasible. Using Farkas' lemma on the dual, we obtain the existence of 2: A2 = 0, 
2 2 0 and cT2 = -1 < 0. Our certificate in this case consists of both a vertex of 
{Ax = b, x 2 0) (to show feasiblity) and a vertex of {Ax = 0, x 2 0, cTx = -1) 
(to show unboundedness if feasible). By choosing a vertex x' of {Ax = 0, x 2 0, 
cTx = -11, we insure that x' has polynomial size (again, see Section 11.2). 

This proves that LP E NP. (Notice that when the linear program is infeasible, 
the answer to LP is "no", but we are not responsible to offer such an answer in order 
to show LP E NP). 

Secondly, we show that LP E co-NP, i.e. ZF E NP, where ZF is defined as: 
Input: A, b, c, and a rational number A, 
Question: Is min{cTx : Ax = b, x 2 0) > A? 

If {x : Ax = b, x 2 0) is nonempty, we can use strong duality to show that Z F  is 
indeed equivalent to: 

Input: A, b, c, and a rational number A, 
Question: Is max{bTy : ATy 5 c) > A? 

which is also in NP, for the same reason as LP is. 
If the primal is infeasible, by Farkas' lemma we know the existence of a y s.t. 

ATy 2 0 and bTy = -1 < 0. This completes the proof of the theorem. 

Solving a Liner Program in Polynomial Time 

The first polynomial-time algorithm for linear programming is the so-called ellipsoid 
algorithm which was proposed by Khachian in 1979 [6]. The ellipsoid algorithm was in 
fact first developed for convex programming (of which linear programming is a special 
case) in a series of papers by the russian mathematicians A.Ju. Levin and, D.B. Judin 
and A.S. Nemirovskii, and is related to work of N.Z. Shor. Though of polynomial 
running time, the algorithm is impractical for linear programming. Nevertheless it 
has extensive theoretical applications in combinatorial optimization. For example, 
the stable set problem on the so-called perfect graphs can be solved in polynomial 
time using the ellipsoid algorithm. This is however a non-trivial non-combinatorial 
algorithm. 



In 1984, Karmarkar presented another polynomial- t ime algorithm for linear pro- 
gramming. His algorithm avoids the combinatorial complexity (inherent in the sim- 
plex algorithm) of the vertices, edges and faces of the polyhedron by staying well 
inside the polyhedron (see Figure 13). His algorithm lead to many other algorithms 
for linear programming based on similar ideas. These algorithms are known as interior 
point methods. 

Figure 6: Exploring the interior of a convex body. 

It still remains an open question whether there exists a strongly polynomial algo- 
rithm for linear programming, i.e. an algorithm whose running time depends on m 
and n and not on the size of any of the entries of A, b or c.  

In the rest of these notes, we discuss an interior-point method for linear program- 
ming and show it s polynomiality. 

High-level description of an interior- point algorithm : 

1. If x (current solution) is close to the boundary, then map the polyhedron onto 
another one s.t. x is well in the interior of the new polyhedron (see Figure 7). 

2. Make a step in the transformed space. 

3. Repeat (a) and(b) until we are close enough to an optimal solution. 

Before we give description of the algorithm we give a theorem, the corollary of 
which will be a key tool used in determinig when we have reached an optimal solution. 



Theorem 17 Let X I ,  x2 be vertices of Ax = b, 
x 2 0. 

If cTxl # cTx2 then lcTxl - cTx21> 2-2L. 

Proof: 
By Theorem 15, 3 qi, q 2 ,  such that 1 5 ql,q2 < 2L, and qlxl,qzx2 E Wn. Further-

more, 

since cTxl - cTx2 # 0, q l ,  q 2  2 1 

since ql ,q2 < 2L. 

Corollary 18 Assume z = min{cTx : Ax = b x > 0 .d 
polyhedron P 

Assume x is feasible to P ,  and such that cTx 5 z + 2-2L. 

Then, any vertex xr such that cTx' 5 cTx is an optimal solution of the LP. 

Proof: 
Suppose x f  is not optimal. Then, 3x*, an optimal vertex, such that cTx*= z .  
Since x' is not optimal, cTx' # cTx*,and by Theorem 17 

by definition of x 
by definition of x' 

a contradiction. 
What this corollary tells us is that we do not need to be very precise when choosing 

an optimal vertex. More precisely we only need to compute the objective function 
with error less than 2-2L. If we find a vertex that is within that margin of error, then 
it will be optimal. 



Figure 7: A centering mapping. If x is close to the boundary, we map the polyhedron 
P onto another one PI, s.t. the image x' of x is closer to the center of PI. 

13.1 Ye's Interior Point Algorithm 
In the rest of these notes we present Ye's [9] interior point algorithm for linear pro- 
gramming. Ye's algorithm (among several others) achieves the best known asymptotic 
running time in the literature, and our present at ion incorporates some simplifications 
made by Freund [3]. 

We are going to consider the following linear programming problem: 

minimize Z = cTx 
subject to Ax = b, 

a: 2 0 

and its dual 
maximize W = bTy 
subject to ATy + s = c, 

s > 0. 

The algorithm is primal-dual, meaning that it sirnult aneously solves both the 
primal and dual problems. It keeps track of a primal solution and a vector of dual 
slacks 3 (i.e. 3 j j  : ATjj = c - S )  such that > 0 and 3 > 0. The basic idea of this 
algorithm is to stay away from the boundaries of the polyhedron (the hyperplanes 
xj 2 0 and sj 2 0, j = 1,2,  .. . ,n) while approaching optimality. In other words, we 
want to make the duality gap 

cT5 - z T ~bTy= > 0 

very small but stay away from the boundaries. Two tools will be used to achieve this 
goal in polynomial time . 

To01 1: Scaling (see Figure 7) 
Scaling is a crucial ingredient in interior point methods. The two types of scaling 

commonly used are projective scaling (the one used by Karmarkar) and a f i n e  sealing 
(the one we are going to use). 



Suppose the current iterate is 3 > 0 and > 0 ,  where 3 = (z1, then5 2 , .  . . ,T ~ ) ~ ,  

the affine scaling maps x to x' as follows. 

Notice this transformation maps f to e = (1,. . . , I ) ~ .  
We can express the scaling transformation in matrix form as x' = 

--
X 

1 
x or x = 

-
X x ' ,  where 

z1 0 0 

X =  
0 0 . . .  Xn-1 

0 0 . . .  
Using matrix notation we can rewrite the linear program (P) in terms of the trans- 
formed variables as: 

minimize Z = cTXx' 

subject to AXx '  = b, 

x' 2 0. 

If we define Z = X c  (note that X = X T ) and 2 = AX we can get a linear program 
in the original form as follows. 

minimize Z = ETx' 
-

subject to Ax' = b, 

x' > 0. 

We can also write the dual problem (D) as: 

maximize W = bTy 

subject to AX)^^ +Xs = E ,  
-
X s  > 0 

or, equivalently, 

maximize W = bTy 

subject to zTY+ S' = 2, 

s' > 0 



where s' =x s ,  i.e. 

One can easily see that 

and, therefore, the duality gap xTs = Cjxjsj remains unchanged under affine scaling. 
As a consequence, we will see later that one can always work equivalently in the 
transformed space. 

Tool 2: Potential Function 
Our potential function is designed to measure how small the duality gap is and 

how far the current iterate is away from the boundaries. In fact we are going to use 
the following "logarithmic barrier function". 

Definition 9 (Potential Function, G(x, s))  

for some q, 

where q is a parameter that must be chosen appropriately. 
Note that the first term goes to -m as the duality gap tends to 0, and the second 

term goes to +m as xi -+ 0 or Si -+0 for some i. Two questions arise immediately 
concerning this potential function. 

Question 1: How do we choose q? 

Lemma 19 Let x, s > 0 be vectors in Rnxl. Then 

nlnxTs - C l n x j s j  2 nlnn .  

Proof: 
Given any n positive numbers 11, . . . ,t,, we know that their geometric mean does 

not exceed their arithmetic mean, i.e. 



Taking the logarithms of both sides we have 

Rearranging this inequality we get 

(In fact the last inequality can be derived directly from the concavity of the logarith-
mic function). The lemma follows if we set t j  = xjsj . 

Since our objective is that G +--m as xTs + 0 (since our primary goal is to get 
close to optimality), according to Lemma 19, we should choose some q > n (notice 
that in xTs + -m as xTs + 0) . In particular, if we choose q = n +1,the algorithm 
will terminate after O(nL) iterations. In fact we are going to set q = n + fi,which 
gives us the smallest number -O(&L) -of iterations by this method. 

Question 2: When can we stop? 

Suppose that xTs 5 2-2L,  then cTx - Z 5 cTx - bTy = xTs 5 2-2L,  where Z is 
the optimum value to the primal problem. From Corollary 18, the following claim 
follows immediately. 

Claim 20 i f  xTs 5 2-2L,  then any vertex x* satisfying cTx* 5 cTx is optimal. 

In order to find x* from x, two methods can be used. One is based on purely 
algebraic techniques (but is a bit cumbersome to describe), while the other (the 
cleanest one in literature) is based upon basis reduction for lattices. We shall not 
elaborate on this topic, although we'll get back to this issue when discussing basis 
reduction in lattices. 

Lemma 21 Let x ,  s be feasible primal-dual vectors such that G(x,s) 5 -kf iL  for 
some constant k .  Then 

Proof: 
By the definition of G(x ,s )  and the previous theorem we have: 

> &lnxTs  + nlnn .  



Rearranging we obtain 

Therefore 
xTs < e-lcL. 

The previous lemma and claim tell us that we can stop whenever G(x,s) 5 
-2fiL. In practice, the algorithm can terminate even earlier, so it is a good idea to 
check from time to time if we can get the optimal solution right away. 

Please notice that according to Equation (3) the affine transformation does not 
change the value of the potential function. Hence we can work either in the original 
space or in the transformed space when we talk about the potential function. 

Description of Ye's Interior Point Algorithm 

Initialization: 
Set i = 0. 
Choose xO> 0, so > 0, and yo such that Ax0 = b, ATy' + so = c and G(xO,so) = 

O(fiL).  (Details are not covered in class but can be found in the appendix. The 
general idea is as follows. By augmenting the linear program with additional variables, 
it is easy to obtain a feasible solution. Moreover, by carefully choosing the augmented 
linear program, it is possible to have feasible primal and dual solutions x and s such 
that all xj's and sj's are large (say 2L). This can be seen to result in a potential of 

O ( f i L ) - )  

Iteration: 

while G(x$ si) > -2J;EL 
either a primal step (changing xi only) 
or a dual step (changing si only) 

to get (xi++',s"+l) 

i : = i + l  

The iterative step is as follows. Affine scaling maps (xi,s" to ( e ,sf). In this 
transformed space, the point is far away from the boundaries. Either a dual or 
primal step occurs, giving (2,s")and reducing the potential function. The point is 
then mapped back to the original space, resulting in (xi++',sG1). 

Next, we are going to describe precisely how the primal or dual step is made such 
that 

7~(2++l,~++l)- ~ ( 2 , s ~ )5 -- < o 
120 

holds for either a primal or dual step, yielding an O(f iL)  total number of iterations. 



~ u l lspace of A 
{x:&=o} 

Figure 8: Null space of 2 and gradient direction g. 

In order to find the new point (5,:) given the current iterate (e, s f )  (remember 
we are working in the transformed space), we compute the gradient of the potential 
function. This is the direction along which the value of the potential function changes 
at the highest rate. Let g denote the gradient. Recall that (e, s f )  is the map of the 
current iterate, we obtain 

We would like to maximize the change in G, so we would like to move in the 
direction of -g. However, we must insure the new point is still feasible (i.e. 25 = b).

-
Let d be the projection of g onto the null space {x : Ax = 0) of 2. Thus, we will 
move in the direction of -d. 

Proof: 
Since g - d is orthogonal to the null space of 2, it must be the combination of 

some row vectors of 71. Hence we have 

( Z d = 0  

This implies 



(normal equations). 

Solving the normal equations, we get 

and 
-T --T -1- -T --T -1-

d = g - A  (AA ) A g = ( I - A  (AA ) A)g. 

A potential problem arises if g is nearly perpendicular to the null space of 2. In 
this case, 1 Id11 will be very small, and each primal step will not reduce the potential 
greatly. Instead, we will perform a dual step. 

In particular, if 1 Id1 1 = I Id1 l z  = d m  2 0.4, we make a primal step as follows. 

Claim 23 2 > 0. 

Proof: 
Ic",.l-Iii>?>O 

4 1p11 - 4 
This claim insures that the new iterate is still an interior point. For the similar 

reason, we will see that s" > 0 when we make a dual step. 

7Proposition 24 W h e n  a pr imal  s tep  i s  made ,  G(5,g) -G(e, st) 5 -,. 

If 1 Id1 1 < 0.4, we make a dual step. Again, we calculate the gradient 

Notice that h j  = gj/sj, thus h and g can be seen to be approximately in the same 
direction. 

Suppose the current dual feasible solution is y', st such that 



Again, we restrict the solution to be feasible, so 

Thus, in the dual space, we move perpendicular to the null space and in the direction 
of -(g - d). 

Thus, we have 

For any p, 3y xTY+ic= 


So, we can choose p = and get zT(y'+ pw) + ." = C. 

4 


Therefore, 

One can show that 9 > 0 as we did in Claim 23. So such move is legal. 

Proposition 25 W h e n  a dual  s tep is m a d e ,  G(?,.") -G(e, st) 5 -:1 

According to these two propositions, the potential function decreases by a con- 
stant amount at each step. So if we start from an initial interior point (xO, so)with 
G(xo, so) = O(J;IL), then after O(f iL)  iterations we will obtain another interior 
point (xi, sj)  with G(xj, sj)  5 -kJ;IL. From Lemma 21, we know that the duality 
gap (xj)'sj satisfies 

and the algorithm terminates by that time. Moreover, each iteration requires O(n3) 
operations. Indeed, in each iteration, the only non-trivial task is the computation of 
the projected gradient d. This can be done by solving the linear system (AAT)w = Ag 
in O(n3) time using Gaussian elimination. Therefore, the overall time complexity of 
this algorithm is O(n3-5L). By using approximate solutions to the linear systems, we 
can obtain O(n2.5) time per iteration, and total time O(n3L). 



Analysis of the Potential Function 
In this section, we prove the two propositions of the previous section, which concludes 
the analysis of Ye's algorithm. 
Proof of Proposition 24: 

= qln 1-( 4) - k l n ( l - - ) .  
411dlleTs' j=l 41 ldl I 

Using the relation 

which holds for 1x1 5 a < 1,we get: 

for a = 114 

Note that gTd = 1 Id1 1 2 ,  since d is the projection of g. (This is where we use the 
fact that d is the projected gradient!) 

Before proving Proposition 25, we need the following lemma. 



Lemma 26 

Proof: 
Using the equality s" = $(e + d) and Equation 6, which holds for lx 1 5 a < 1,we 

see that 

Proof of Proposition 25: 
Using Lemma 26 and the inequality 

which follows from the concavity of the logarithm function, we have 

On the other hand, 

and recall that A = eTs', 

since, by Cauchy-Schwartz inequality, leTdl 5 Ilell lldll = filldll. Combining the 
above inequalities yields 

G(e,.?)- G(e,s') 5 & + f i l n (1  -Fz) 



since n + z/;E 5 2n. 
This completes the analysis of Ye's algorithm. 

Bit Complexity 

Throughout the present ation of the algorithm, we assumed that all operat ions can 
be performed exactly. This is a fairly unrealistic assumption. For example, notice 
that lldll might be irrational since it involves a square root. However, none of the 
thresholds we set were crucial. We could for example test whether lldll 2 0.4 or 
lldll 5 0.399. To test this, we need to compute only a few bits of ildll. Also, if 
we perform a primal step (i.e. lldll 2 0.4) and compute the first few bits of lldll SO 

that the resulting approximation ildllaP satisfies (4/5)11dll 5 Ildlla, 5 lldll then if we go 
through the analysis of the primal step performed in Proposition 1,we obtain that the 
reduction in the potential function is at least 191352 instead of the previous 71120. 
Hence, by rounding lldll we can still maintain a constant decrease in the potential 
function. 

Another potential problem is when using Gaussian elimination to compute the pro- 
jected gradient. We mentioned that Gaussian elimination requires O(n3) arithmetic 
operations but we need to show that, during the computation, the numbers involved 
have polynomial size. For that purpose, consider the use of Gaussian elimination to 
solve a system Ax = b where 

Assume that all # 0 (otherwise, we can permute rows or columns). In the first 
(1)iteration, we substract an /a$:) times the first row from row i where i = 2,. . . ,rn, 

resulting in the following matrix: 

In general, A("') is obtained by subtracting a$:)/a!i) times row i from row j of A ( ~ )  
for j = i + l ,  . . .  ,m. 

Theorem 27 For all i 5 j ,  k ,  ayk) can be written in the form det(B)/ det(C) where 
B and C are some submatrices of A. 



Proof: 
Let Bi denote the i x i submatrix of A(" consisting of the first i entries of the first 

i rows. Let B:;) denote the i x i submatrix of A(" consisting of the first i - 1 rows 

and row j ,  and the first i - 1 columns and column k. Since Bi and B,(;) are upper 
triangular matrices, their determinants are the products of the entries along the main 
diagonal and, as a result, we have: 

a(!) : 
det (Bi) 

det(Bi-1) 

and 

(4 - det (B:;)) 
a'k - det(Bi-l)' 

Moreover, remember that row operations do not affect the determinants and, hence, 
the determinants of B:;) and Bimlare also determinants of submatrices of the original 
matrix A. 

Using the fact that the size of the determinant of any submatrix of A is at most the 
size of the matrix A, we obtain that all numbers occuring during Gaussian elimination 
require only 0(L) bits. 

Finally, we need to round the current iterates x, y and s to O(L) bits. Otherwise, 
these vectors would require a constantly increasing number of bits as we iterate. By 
rounding up x and s, we insure that these vectors are still strictly positive. It is 
fairly easy to check that this rounding does not change the potential function by a 
significant amount and so the analysis of the algorithm is still valid. Notice that now 
the primal and dual constraints might be slightly violated but this can be taken care 
of in the rounding step. 

Transformation for the Interior Point Algorithm 

In this appendix, we show how a pair of dual linear programs 

Min cTx 
s.t. A x = b  

x > o  

Max bTy 
s.t. ATy + s = c 

s > o  

can be transformed so that we know a strictly feasible primal solution xo and a strictly 
feasible vector of dual slacks so such that G(xo;so) = O(fiL)  where 

and q = n + J;E. 



Consider the pair of dual linear programs: 

Min 
(PI) s.t. 

and 

Min 

(Dl) s.t. 


2L 	 Twhere ICb = 26L(n+ 1)- 2 c e is chosen in such a way that x' = (x, x,+1, x,+~)= 
(22Le,1,22L) is a (strict) feasible solution to (PI)and k, = 2". Notice that (y', s') = 
(Y ,  Ym+17 S, Sn+lt s ~ + ~ )  1,24Le,kc,24L) is a feasible solution to (D')= (0, - with s' > 0. 
xt and (y', s') serve as our initial feasible solutions. 

We have to show: 

1. G(xt;s') = o(&?L) where n' = n + 2, 

2. 	 the pair (P')- (Dl) is equivalent to (P)- (D), 

3. 	the input size L' for (PI)as defined in the lecture notes does not increase too 
much. 

The proofs of these statements are simple but heavily use the definition of L and 
the fact that vertices have all components bounded by 2L. 

We first show 1. Notice first that xis; = 26L for all j ,  implying that 

n' 
G(x';sl)  = (n l+  J;17)1n(xrTs') - Cln(xis:) 

j=1 

= (n' + 6) -ln(26Ln') n' ln(ZGL) 

= ~ G l n ( 2 ~ ~ )  ln(n')+ (n' + fi) 
= 0(fiIJ) 

In order to show that (P')- (Dl) are equivalent to (P)- (D),we consider an 
optimal solution x* to (P)and an optimal solution ( y*, s*) to (D) (the case where 
(P)or (D)is infeasible is considered in the problem set). Without loss of generality, 
we can assume that 2* and (y*, s*) are vertices of the corresponding polyhedra. In 
particular, this means that z;, 1 y; 1, s; < 2=. 



Proposition 28 Let x' = (x*,0, (kb-(24Le-~)Tx*)/24L)and let (y', sf)= (y*, 0, ,s*,kc-
( b  - 22L~e)Ty* ,0). Then 

1. x' is a feasible solution to (P') with x;+, > 0, 

2. (y', s') is a feasible solution to (D') with s;+, > 0, 

3. x' and (y', sf)  satisfy complementary slackness, i.e. they constitute a pair of 
optimal solutions for (P')- (D'). 

Proof: 
To show that x' is a feasible solution to (P') with x;+, > 0, we only need to 

show that kb- (24Le- c ) ~ x *> 0 (the reader can easily verify that x' satisfy all the 
equalities defining the feasible region of (P')). This follows from the fact that 

and 

kb = P L ( n+ 1)- 22L~Te2 P L ( n  + 1)- 22Lnm+x lcj 1 2 P L n  + 26L- 23L > n P L  
3 

where we have used the definition of L and the fact that vertices have all their entries 
bounded by 2L. 

To show that (y', s') is a feasible solution to (D') with s;+, > 0, we only need to 
show that kc - ( b  - 22LAe)Ty*> 0. This is true since 

( b  - 2 2 L ~ e ) T y *5 bTY* - 2 2 L e T ~ T y *  

5 m max lbi12L+ 22Lnmrnax laij12L 
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x' and (y', st) satisfy complementary slackness since 

x * ~ s *= 0 by optimality of x* and (y*, s*) for (P)and (D) 

X;+~S;+, = 0 and 

This proposition shows that, from an optimal solution to (P)- (D),we can easily 
construct an optimal solution to (P')- (D') of the same cost. Since this solution 
has s;+, > 0, any optimal solution ;i. to (P')must have ?,+I = 0. Moreover, since 
x;+, > 0, any optimal solution (6,;) to (D') must satisfy in+, = 0 and, as a result, 

= 0. Hence, from any optimal solution to (P')- (D'), we can easily deduce an 
optimal solution to (P)- (D). This shows the equivalence between (P)- (D) and 
(PI)- (D'). 

By some tedious but straightforward calculations, it is possible to show that L' 
(corresponding to (PI)-(D')) is at most 24L. In other words, (P)-(D) and (PI)-(D') 
have equivalent sizes. 
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