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Network flows 
Lecturer: Michel X. Goemans 

In these notes, we study some problems in "Network Flows". For a more compre-
hensive treatment, the reader is referred to the surveys [12,1], or to the recent book [2]. 
Network flow problems arise in a variety of settings; the underlying networks might 
be transportation networks, communication networks, hydraulic networks, computer 
chips, or some abstract network. The field was born from applications in the 40's 
and 50's and has since developed into a strong methodological core with numerous 
algorithmic issues. The first polynomial time algorithms for network flow problems 
have been developed in the 70's, and constant progress towards faster and faster al-
gorithms has been made in the 80's. Network flow problems can be formulated as 
linear programs and, as a result, all the methodology of linear programming can be 
applied. Duality plays a crucial role, and the simplex algorithm can take advantage 
of the structure of network flow problems (bases can be nicely characterized). 

Some of the basic problems in this area include the single source shortest path 
problem, the maximum flow problem, and the minimum cost flow problem. First, 
we shall briefly review each of them and then we shall describe a polynomial time 
algorithm due to Goldberg and Tarjan [14] for the minimum cost flow problem. 

Single Source Shortest Path Problem 

We are interested in the following problem: 
Given 

a directed graph G = (V,E) where V is the set of vertices and E is the set of 
edges, 

and a length function I : E +Z, 

a distinguished vertex s E V (the source vertex), 

Find for all v E V the length S(v) of the shortest path from s to v. 
This is NP-hard if we allow negative length cycles (i.e. cycles for which the sum of 

the lengths of its edges is negative). However, if all lengths are nonnegative (I(u,v)2 
0 for all edges (u,v) E E) then a standard algorithm that solves this problem is 
Dijkstra's algorithm [6] (see also [4]). The implementation of Dijkstra's algorithm is 
based on the implementation of a priority queue and various implementations of this 
priority queue lead to different worst-case running times. Using a Fibonacci heap 
implementation [lo] of the priority queue, it can be shown that the algorithm has a 
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total running time of O(rn + n log n) where rn = IE 1 and n = IVI. This is the best 
known strongly polynomial algorithm for the single-source shortest path problem. An 
algorithm is said to be strongly polynomial if 

1. It performs a polynomially bounded number of operations in the number of 
input data (in this case m and n). We allow the operations +,-,*,< and rational 
division. 

2. The sizes of the numbers occurring during the algorithm are polynomially 
bounded in the size of the input. 

There are also single-source shortest path algorithms which may not be strongly 
polynomial, i.e. algorithms whose running time depends on L = max Z(u,v)+l .  These 
algorithms may achieve a better running time than Dijkstra's algorithm, provided L 
is not too large. Listed below are four such algorithms: 

Dial [5] O(rn + nL) 
Johnson [16] O(mlog log L) 
Gabow [I11 O(rnlogdL) where d = max(2, rrnlnl) 
Ahuja, Mehlhorn, Orlin, Tarjan [3] O(rn +7243) 

Observe that all these algorithms except Dial's algorithm are polynomial since the 
size of the input is at least log L. 

If negative lengths are allowed then the problem can still be solved in polynomial 
time provided that no negative length cycle exists. The algorithm of Bellman-Ford 
solves this problem in O(nm) time. 

We would like to point out that these problems are defined on a directed graph. 
An undirected shortest path problem can easily be reduced to a directed instance 
by replacing every edge by bidirected edges. This reduction is fine if all lengths are 
nonnegative (in which case Dijkstra's algorithm can be used), but does not work if 
there are edges of negative length. In this case, indeed, a negative length cycle would 
be created. However, the undirected shortest path problem on an undirected graph 
with possibly negative edge lengths but no negative length cycle can still be solved 
in polynomial time. The algorithm is, however, fairly complicated and is based on a 
reduction of the problem to nonbipartite matching. 
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Given 

The Maximum Flow Problem 

a directed graph G = (V,E) where V is the set of vertices and E is the set of 
edges, 

capacity u(v, w) 2 0 for (v,w) E E ,  

source s E V, 



a sink t E V, 

a flow f is an assignment of values to the edges which satisfies f (v, w) 5 u(v, w) for 
all edges (v, w) and which satisfies the flow conservation constraints 

for all vertices v except s and t. The goal is to find a flow such that the net flow 
cwf(s,  w) out of s (Cv:(s,v)~Ef(s ,  v)) is maximum. One can easily derive that the 
net flow out of s is equal to the net flow into t ,  and thus we could maximize this latter 
quantity as well. 

All these constraints are linear constraints and the objective function is linear, so 
the maximum flow problem (MAX FLOW) is a linear program. We could therefore 
exploit the structure of the linear program to tailor the simplex algorithm. This has 
been done and, in fact, although no version of the simplex algorithm is known to run 
in polynomial time for general linear programs, it is known that it can be made to 
run in polynomial time (or even in strongly polynomial time) for the maximum flow 
problem. Goldfarb and Hao [15] have developed a version of the simplex which makes 
at most nrn pivots and run in O(n2m) time. However, there are some more efficient 
combinatorial algorithms which exploit the structure of the problem. Most known 
algorithms are based on the concept of "augmenting paths", introduced by Ford and 
Fulkerson [8]. There are a variety of algorithms with different running times. The 
best strongly polynomial running time of a max flow algorithm is O(nm log n2/m) 
(due to Goldberg and Tarjan [13]). 

Minimum Cost Circulation Problem 
In the minimum cost circulation problem, we are given a directed graph G = (V,E). 
For each arc (v, w) E E, we are given a cost c(v, w), a lower bound l(v, w) and an 
upper bound u(v, w). Throughout, we assume that 1(., .),u(., .) and c ( . , .) are integral 
unless mentioned otherwise. We will associate a flow f with each arc of the graph. 
This flow will be required to satisfy l(v, w) 5 f (v, w) 5 u(v, w) and the cost of the 
flow on (v,  w) is defined to be c(v, w) f (v, w). This is the classical notation. However, 
in our lectures, we adopt Goldberg and Tarjan's notation [14] in which every directed 
arc (v, w) is represented by arcs (v,  w) and (w, v) (see Figure 1). 

This will simplify the proofs later on. In this notation, the flow f (w, v) on (w, v) 
is assumed to be equal to -f (v, w), i.e. the flow is antisymmetric. Using this anti- 
symmetry assumption, the lower bound on the flow f (v, w) is equivalent to an upper 
bound of -l(v, w) on f (w, v). Also, the cost c(w, v) on the arc (w, v) is defined to be 
-c(v, w). This ensures that, if we push some flow on (v, w) and then decide to push 
it back from w to v, we get a full refund of the cost incurred (i.e. c(v, w) f (v, w)). 
Notice that the total cost of the flow on the arcs (v,w) and (w,v) is equal to 



Figure 1: Standard notation vs. Goldberg-Tarj an notation. 

C(V, w)f (v, W) + C(W, v)f (w, v) = C(U, w)f (v?W) - C(V, w)f (w, v )  = ~ C ( U ?w)f (v, W) = 
2c(w, v) f (w, v). 

To recapitulate, we are given a bidirectedl graph G = (V,E), a capacity function 
u : E -+iZ and a cost function c : E -+ Ti. The cost function is assumed to be 
antisymmetric: 

c(v, w) = -c(w, v) V(v,W) E E. 

A flow is a function f : E +R,  which is assumed 

1. to be antisymmetric, i.e. f (v, w) = -f (w, v), and 

2. to satisfy the capacity constraints: f (v, w) 5 u(v, w) for all (v, w) E E .  

The cost of a flow is defined as: 

A flow is said to be a circulation if 

for all v E V. Using the antisymmetry constraints, this is equivalent to saying that 
the flow out of vertex v minus the flow into v is equal to 0 for all v E V. These 
conditions are thus the flow conservation constraints. The minimum cost circulation 
problem is the problem of finding a circulation of minimum cost. 

A closely related problem to the minimum cost circulation problem is the minimum 
cost flow problem. In this problem, we are also given a supply function b : V + Z 
satisfying CvEV 0 and the flow is required to satisfy b(v) = 

for all v E V. The goal is to find a flow satisfying (1)of minimum cost. The minimum 
cost circulation problem is clearly a special case of the minimum cost flow problem 
(simply take b(v) = 0 for all v E V). However, the converse is also true. Consider 



Figure 2: How to convert a minimum cost flow problem into a minimum cost circu- 
lation problem. 

the following transformation that converts any instance of the minimum cost flow 
problem into an instance of the minimum cost circulation problem (see Figure 3). 

Let G = (V', E') be the graph obtained by extending G with one extra vertex, say 
s ,  linked to all other vertices, i.e. V' = VU {s} and E' = EU{(s, v) : v E V) U{(v, s )  : 
v E V}. For these new edges, let c(s, v) = c(v, s)  = 0 and u(s, v) = b(v) = -u(v, s) ,  
the other costs and capacities remaining unchanged. The capacities on the bidirected 
edges incident to s have been chosen in such a way that, for any flow f on this 
extended graph, we have f ( s ,  v )  = b(v). Therefore, any circulation f on G' induces 
a flow on G satisfying (1) and vice versa. Since this circulation on G' and this flow 
on G have the same cost, we can solve the minimum cost flow problem by solving a 
minimum cost circulation problem. 

In these notes, we develop a purely combinatorial algorithm to solve the mini- 
mum cost circulation problem and we will also show that this problem can be solved 
in strongly polynomial time. (We'd like to point out that for the minimum cost flow 
or circulation problem, it is not known whether the simplex method can be adapted 
to run in strongly polynomial time (contrary to the case for the maximum flow prob- 
lem).) 

In many situations, the circulation is required to be integral. This additional re- 
striction is not restrictive as indicated in the following Theorem -sometimes referred 
to as the integrality theorem. 

Theorem 1 If u(v, w) E Zfor all (v ,  w) E E then there exists a n  optimal circulation 
(or flow) with f (v ,w) E Z. 

Although there are several ways to prove this result, we will deduce it later in the notes 
from a simple algorithm for the minimum cost circulation problem. More precisely, we 
will show that, at every iteration of the algorithm, the current circulation is integral 
and, hence, it is also integral when the algorithm terminates. 

The minimum cost circulation problem has some interesting special cases as de- 
scribed in the next sections. Our strongly polynomial time algorithm for the mini- 
mum cost circulation problem will thus lead to strongly polynomial time algorithms 

'(v,w)E E implies (w,v) E E. 



for these special cases (although more efficient algorithms can be designed for these 
special cases). 

The Maximum Flow Problem 
The maximum flow problem is a special case of the minimum cost circulation problem. 
Indeed, given an instance of the maximum flow problem, add an edge between s and 
t (see Figure 3.1) and define u(t ,s)  = oo,u(s, t)  = 0, c(t ,s)  = -1 = -c(s,t) and 
c(v, w) = 0 for all (v, w) # (s, t ). 

Figure 3: How to transform a maximum flow problem into a minimum cost circulation 
problem. 

The capacities on the bidirected edge (s, t )  is such that f (t,s)  2 0, implying that 
the flow goes from t to s. There is a one-to-one correspondence between circulations 
in this extended graph and flows in the original graph satisfying all flow conservation 
constraints in V \ {s, t). Moreover, the cost of any circulation in this extended graph 
is exactly equal to minus the net flow out of s (or into t ) in the original graph. As a 
result, the maximum flow problem in G is equivalent to the minimum cost circulation 
problem in the extended graph. 

Using the integrality theorem (Theorem I),  we obtain that the flow of maximum 
value can be assumed to be integral whenever the capacities are integral. 

Bipartite Matching 
The maximum cardinality matching problem on a bipartite graph G = (A,B,E) 
(A and B denotes the bipartition of the vertex set) is the problem of finding the 
largest number of disjoint edges. This problem is a special case of the maximum 
flow problem and, hence, of the minimum cost circulation problem. To transform the 
maximum cardinality bipartite matching problem into a maximum flow problem (see 
Figure 3.2), we 

1. direct all the edges from A to B, 

2. add a source vertex s,  a sink vertex t, 



3. 	add the edges (s,a) for all vertices a E A and the edges (b, t )  for all vertices 
b E B and 

4. define the capacity of all existing edges to be 1and the capacity of their reverse 
edges to be 0 (in other words, the flow on the existing edges have a lower bound 
of 0). 

By the integrality theorem, we know that the flow on any existing edge can be assumed 
to be either 0 or 1. Therefore, to any flow f ,  there corresponds a matching M = 
{(v, w) E E : f (v,W) = 1) whose cardinality is precisely equal to the net amount of 
flow out of vertex s. 

Figure 4: Maximum cardinality bipartite matching is a special case of maximum-flow. 

It is also easy to construct from a matching M a flow of value I MI. As a result, any 
integral flow of maximum value will correspond to a matching of maximum cardinality. 

In fact, the minimum weighted bipartite matching problem is also a special case 
of the minimum cost circulation problem. We can modify the above transformation 
in the following way. Define the cost of any edge of the original graph to be its 
original cost and the cost of any new edge to be 0. Now, we can model three versions 
of the minimum weighted bipartite matching problem by appropriately defining the 
capacities on the edges (t ,s)  and (s, t ): 

1. If u(t ,s)  = n and u(s, t)  = -n where n = IAI = IBI, we get the minimum 
weighted perfect (a perfect matching is a matching that covers all the vertices) 
matching . 

2. 	If u(t ,S) = n and u (s, t )  = 0, we obtain the minimum weighted matching. 

3. 	If u(t, s )  = k and u(s, t) = -k, we obtain the minimum weighted matching of 
size E .  
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Shortest paths 
The single source shortest path problem is also a special case of the minimum cost 
flow problem. Indeed, by setting l(v, w) = 0 and u(v, w) = 1 for every edge (and 
letting their cost be the original cost), and introducing an edge from t to s with 
u(t, s )  = l(t,s) = 1 and c(t, s )  = 0, we obtain an equivalent instance of the minimum 
cost circulation problem. 

Some Important Notions 

We now go back to the minimum cost circulation problem, and before describing a 
polynomial time algorithm for it, we present some useful tools. 

Residual Graph 
Given a minimum cost circulation problem and a circulation f ,  we define the residual 
graph Gf = (V,Ef) with respect to f by Ef = {(v, w) : f (v, w) < u(v, w)). For 
example, if u(v,w) = 5, u(w,v) = -1 and f(v,w) = 3 (hence, f(w,v) = -3 by 
antisymmetry) then both (v, w) and (w, v) will be present in Ej.  However, iff (v, w) = 
1 (i.e. f (w,v )  = -I), only (v,  w) will be in Ef.With respect to f ,  we define the 
residual capacity of the edge (v, w) by 

Notice that the edges of the residual graph have a positive residual capacity. 

Potentials 
We associate with each vertex v a vertex potential p(v). The potential of a vertex can 
be interpreted as the dual variable corresponding to the flow conservation constraints 
in the linear programming formulation of the problem. The reduced cost of the edge 
(v ,  w) is then defined as cp(v, w) :=c(v, w) +p(v) -p(w). Note that the reduced costs 
are still antisymmetric i.e. cp(w, v) = c(w,v)  +p(w) -p(v) = -c(v, w) -p(v) +p(w) = 
-cp(v, w). Note also that the cost 

of a directed cycle r is equal to its reduced cost 

since the vertex potential of any vertex v on the cycle is added and subtracted exactly 
once. More generally, we have the following result. 



Theorem 2 For any p : V -+ Z and any circulation f ,  we have c . f = cp f .  

Proof: By definition, 

since by definition of a circulation 

When is a circulation Optimal? 

The next theorem characterizes a circulation of minimum cost. 

Theorem 3 For a circulation f ,  the following are equivalent: 

I .  f is of minimum cost, 

2. there are no negative (reduced) cost cycles in  the residual graph, 

3. there exist potentials p such that c,(v, w) 2 0 for (v,w) E Ef. 

This is essentially strong duality, but we will not refer to linear programming in 
the proof. Proof: 

( 1 2 )  * (11). 
Let I? be a negative cost cycle in Ef.Let 

S = min uf(v,w) > 0. 
( v , w ) ~ r  

By pushing S units of flow along I?, we mean replacing f by f where 

f(.,w)+S ( V , W )  E r  
f ( ~ ,W) - s (w, V )  E r 
f (v,  w) otherwise 

Notice that, as defined, f also satisfies the antisymmetry constraints and is a 
circulation. Moreover, c . f" = c . f + S c( r )  < c . f .  This implies that f is not 
of minimum cost . 



2 3 3 .  
Let G' be obtained from the residual graph Gfby adding a vertex s linked to 
all other vertices by edges of cost 0 (the costs of these edges do not matter). 
Let p(v) be the length of the shortest path from s to v in G' with respect to 
the costs c(., .). 

This quantities are well-defined since Gf does not contain any negative cost 
directed cycle. By definition of the shortest paths, we have p(w) 5 p(v)+c(v, w) 
for all edges (v,w) E Ef. This implies that c, (v,w) 2 0 whenever (v,w) E Ef. 

. 3 * 1 .  
The proof is by contradiction. Let f * be a circulation such that c f * < c f .  
Consider f'(v, w) = f * (v,w) - f (v,  w). By definition of the residual capacities, 
f' is a feasible circulation with respect to u (.,.). Its cost is 

since ft(v,w) > 0 implies that (v,  w) E Ef and, hence, cp(v,w) 2 0. This 
contradicts the fact that c .  f' = c .  f *- c .  f < 0. 

A problem is well characterized if its decision version belongs to NPnco- N P .  The 
above theorem gives a good characterization for the minimum cost circulation problem 
(to be precise, we would also need to show that the potentials can be compactly 
encoded). It also naturally leads to a simple algorithm, first discovered by Klein [17] 
also known as the 'Cycle Cancelling Algorithm' . 

Klein's Cycle Canceling Algorithm 
Cycle canceling algorithm (Klein): 

1. Let f be any circulation. 

2. While Gf contains a negative cycle r do 
push 6 = min uf(v,w) along I?. 

( v , w ) ~ r  

Recall that in the previous code "push" means that we increase the flow by 6 
along the well oriented edges of I' and decrease it by 6 along the other edges of I'. 

In Step 1,we will assume that f = 0 satisfies the capacity constraints (i.e. f = 0 
is a circulation). If this is not the case then a circulation can be obtained by solving 



one maximum flow problem or by modifying the instance so that a circulation can 
easily be found. 

The cycle canceling algorithm can be used to prove Theorem 1. The proof is by 
induction. Assume that the initial circulation is chosen to be integral. Now, if at 
iteration k the circulation is integral, then the residual capacities as well as S are also 
integral. Therefore, the circulation remains integral throughout the algorithm. 

For the maximum flow problem as discussed in Section 3.1, any negative cost 
directed cycle must consist of a directed path from s to t along with the arc ( t ,s)  since 
the only negative cost arc is (t,s). Therefore, in this special case, Klein's algorithm 
reduces to the well-known Ford-Fulkerson's augmenting path algorithm [8]. 

Ford-Fulkerson's augmenting path algorithm: 

1. Start with the zero flow: f = 0. 

2. While Gf contains a directed path P from s to t do 
push S = min uf(v,w) along P. 

( v , w ) E ~  

In the next Theorem, we show that the cycle canceling algorithm is correct if the 
costs and capacities are integral. 

Theorem 4 If c : E + Z and u : E + Z then Klein's algorithm terminates after 
O(mCU) iterations where m = IEl, C is an upper bound on the absolute value of any 
cost and U is an upper bound on the absolute value of any capacity. Moreover, the 
resulting circulation is optimal. 

Proof: Since the costs are integral, any cycle of negative cost has a cost of at most 
-1. Moreover, if (v,w) E Gf then u (v,w) 2 1 which implies that S > 1. Therefore, 
at each iteration, the cost of the current circulation decreases by at least 1unit. On 
the other hand, since ic(v,W) I < C and I f  (v,W) I < U, the absolute value of the cost 
of the optimal circulation is at most mCU. Therefore, the algorithm terminates after 
O(mCU) iterations. At that point, the residual graph does not contain any negative 
cycle and, hence, by Theorem 3, the circulation is optimal. 

The bound given in Theorem 4 is however not polynomial. In fact, if the negative 
cycles (or the directed paths in Ford and Fulkerson's algorithm) are not appropriately 
chosen, the worst-case running time of the algorithm is exponential. In Figure 6, we 
have an instance of the maximum flow problem in which if we augment alternatively 
along the paths s - 1- 2 - t and s - 2 - 1- t, the number of iterations will be 2C 
since at each iteration we push only one additional unit of flow from s to t . If C = 2n, 
this gives an exponential bound. 

Even more surprisingly, the cycle canceling algorithm and the augmenting path 
algorithm without any specification of which negative directed cycle or which directed 
st-path to select are not correct if the capacities are irrational. In [9],it is shown that 

Flow-11 



Figure 5: Numbers on the arcs represent the capacities. The reverse arcs have zero 
capacities. 

the augmenting path algorithm can converge to a suboptimal flow if the capacities 
are irrational and the directed paths are selected in an unfortunate way. 

To obtain a polynomial running time, we therefore need to specify which negative 
directed cycle to cancel. If the negative cycle resulting in the maximum cost im- 
provement is selected, the number of iterations becomes polynomial. Unfortunately, 
finding this cycle is NP-hard. For the maximum flow problem, however, this selection 
rule reduces to finding the st-path with maximum residual capacity. Such a path can 
be found in polynomial time (for example, by adapting Dijkstra's algorithm). The 
resulting algorithm, due to Edmonds and Karp [7], requires O(m log U )  iterations. 
The time per iteration is O(m) (amortized). Hence we can implement the algorithm 
with a total running time of O(m2 log U )  (Tarjan [20]). 

For a long time the question of finding a strongly polynomial algorithm (and even 
its existence) for the minimum cost circulation problem was kept open. In 1985, 
~ v aTardos [19] devised the first such algorithm. In 1987, Goldberg and Tarjan [14] 
produced an improved version that we will now present. 

The Goldberg-Tarjan Algorithm 

Define the mean cost of a cycle r to be 

where ir 1 represents the number of arcs in r .  The minimum mean cost cycle of a 
graph can be found in strongly polynomial time, namely in O(nm) time, by adapting 
the Bellman-Ford algorithm for the all pairs shortest path problem. Let 

d f ) =  min. c(r)
cycles r in E~ Ir I 

denote the minimum mean cost of all cycles in G j .  

Goldberg-Tarjan algorithm [14]: 
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1. Let f = 0. 

2. While p ( f )  < 0 do 
push 6= min uf ( v ,w )  along a minimum mean cost cycle of Gf. 

( v , w ) E ~  

The Goldberg-Tarjan algorithm is a cycle canceling algorithm since Gf has a 
negative directed cycle iff p( f )  < 0. 

For the maximum flow problem, this algorithm reduces to the Edmonds-Karp 
shortest augmenting path algorithm [7] in which the st-path with the fewest number 
of arcs is selected. The Edmonds-Karp shortest augmenting path algorithm requires 
O ( m )  time per augmentation and the number of augmentations is O ( n m ) .  This 
results in a running time of O ( n m 2 ) .  

Analysis of the Goldberg-Tarjan Algorithm 
Before analyzing the Goldberg-Tarjan cycle canceling algorithm, we need some defi-
nitions. 

Definition 1 A circulation f is E-optimal if there exists p such that cp(v,w )  2 - E  

for all ( v ,W )  E E f .  

For E = 0, this definition reduces to the condition 3 of Theorem 3, and, therefore, a 
0-optimal circulation is a minimum cost circulation. 

Definition 2 t ( f )  = minimum t such that f is t-optimal. 

We now show that approximate optimality is sufficient when the costs are integral. 

Theorem 5 I f f  is a circulation with t ( f )  < then f is optimal. 

Proof: t(f )  < implies that, for some potentials p, cp( v ,w )  > -+ for all ( v ,w )  E 
Ef .  Therefore, any cycle r of G has reduced cost greater than -Ir 1 + 2 -1. Since 
the costs are integral and the cost of any cycle is equal to its reduced cost, we obtain 
that any directed cycle of Gf has nonnegative cost. Theorem 3 implies that f is 
optimal. 

The following Theorem shows that the minimum mean cost p ( f )  of all cycles in 
Gf represents how close the circulation f is from optimality. 

Theorem 6 For any circulation f ,  p( f )  = -t( f ) .  

Proof: 

~ ( f )L - t ( f ) .  
By definition, there exists p such that cp(v ,w) -t( f )  for all ( v ,w )  E Ef .  
This implies that cp(r) -t(f )  1 I' 1 for any directed cycle I' of Gf .  But, for any 
directed cycle r ,  c ( r )  = c p ( r ) .  Therefore, dividing by lrl, we obtain that the 
mean cost of any directed cycle of Gf is at least - E (  f ). Hence, p(  f )  2 -E (  f ). 
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-4 f )  2 4f ). 
To show that -p(f) 2 ~ ( f ) ,we want to construct a function p such that 
cP(v,w) 2 p(f)  for all (v,w) E Ef .  Let E(v,w) = c(v,w) + (-p(f)) for all 
(v,w) E E f .  Notice that Gf has no negative cost cycle with respect to E(., .) 
since the mean cost of any directed cycle of G is increased by -p (f ). Next, 
add a new node s to G f  and also arcs from s to v for all v E V. Let E(s, v) 
be any value, say 0. Let ~ ( v )be the cost with respect to E(., .) of the shortest 
path from s to v in this augmented graph. Hence, for all (v,w) E Ef,we have 

p(w) Ip(v) + E(v,w) = p(v) + c(v,w) - ~ ( f )implying that c,(v, w) 2 p(f ). 

We are now ready to analyze the algorithm. First, we show that, using t(f) as a 
measure of near-optimality, the algorithm produces circulations which are closer and 
closer to optimal. 

Theorem 7 Let f be a circulation and let f' be the circulation obtained b y  canceling 
the minimum mean cost cycle I' in Ef. Then ~ ( f )2 ~ ( f ' ) .  

Proof: By definition, there exists p such that 

for all (v,  w) E Ef . Moreover, for all (v,  w) E I', we have cp(v,w) = -t( f )  since, 
otherwise, its mean cost would not be -c(f). We claim that, for the same p, (2) holds 
for all (v,  w) E Eft. Indeed, if (v,  w) E EftnEf,(2) certainly holds. If (v,w) E Eft\Ef 
then (w,v )  certainly belongs to I'. Hence, cp(v,w) = -cp(w, v )  = E (  f )  2 0 and (2) is 
also satisfied. 

Next, we show that E( f )  decreases after a certain number of iterations. 

Theorem 8 Let f be any circulation and let f' be the circulation obtained b y  per-
forming m iterations of the Golberg-Tarjan algorithm. Then 

Proof: Let p be such that cp(v,w) 2 -E( f )  for all (v,w) E Ef. Let I'i be the 
cycle canceled at the ith iteration. Let k be the smallest integer such that there 
exists (v,w) E I'k+l with cp(v,w) 2 0. We know that canceling a cycle removes at 
least one arc with negative reduced cost from the residual graph and creates only arcs 
with positive reduced cost. Therefore k 5 m. Let f' be the flow obtained after k 
iterations. By Theorem 6, -c(fl) is equal to the mean cost of Fk+l which is: 

where 1 = Irk+l1 .  Therefore, by Theorem 7, after m iterations, t(f )  decreases by a 
factor of (1- J-). 



Theorem 9 Let C = max lc(v,w) 1 .  Then the Goldberg-Tarjan algorithm finds a 
( 2 1 , ~ )EE 

minimum cost circulation after canceling nm log(nC) cycles (log = log,). 

Proof: The initial circulation f = 0 is certainly C-optimal since, for p = 0, 
we have c,(v, w) 2 -C. Therefore, by Theorem 8, the circulation obtained after 
nm log nC iterations is t-optimal where: 

where we have used the fact that (I-:)" < e-I for all n > 0. The resulting circulation 
is therefore optimal by Theorem 5. 

The overall running time of the Goldberg-Tarjan algorithm is therefore O(n2m2log(nC)) 
since the minimum mean cost cycle can be obtained in O(nm) time. 

A Faster Cycle-Canceling Algorithm 

We can improve upon the algorithm presented in the previous sections by using a 
more flexible selection of cycles for canceling and explicitly maintaining potentials 
to help identify cycles for canceling. The idea is to use the potentials we get from 
the minimum mean cost cycle to compute the edge costs c,(v, w) and then push flow 
along all cycles with only negative cost edges. The algorithm Cancel and Tighten is 
described below. 

Cancel and Tighten: 

1. Cancel: As long as there exists a cycle I' in G with c,(v, w) < 0, V(v, w) E I' 
push as much flow as possible along r. 

2. Tighten: Compute a minimum mean cost cycle in Gf and update p. 

We now show that the Cancel step results in canceling at most m cycles each iteration 
and the flow it gives is (1- l /n ) t ( f )  optimal. 

Theorem 10 Let f be a circulation and let f' be the circulation obtained b y  perform-
ing the Cancel step. Then we cancel at most m cycles to get f' and 

Proof: Let p be such that c,(v, w) 2 -c (  f )  for all (v,w) E Ef.Let I' be any 
cycle in f ' and let 1 be the length of I'. We know that canceling a cycle removes 
at least one arc with negative reduced cost from the residual graph and creates only 
arcs with positive reduced cost. Therefore we can cancel at most m cycles. Now Gf 1 



has no negative cycles therefore every cycle in Gf t contains an edge (v,w) such that 
cp(v,w) 2 0. Hence the mean cost of I' is at least: 

The above result implies that the Cancel and Tighten procedure finds a minimum 
cost circulation in at most n log(nC) iterations (by an analysis which is a replication 
of Theorem 9). It also takes us O(n) time to find a cycle on the admissible graph. 
This implies that each Cancel step takes O(nm) steps due to the fact that we cancel 
at most m cycles and thus a running time of O(nm) for one iteration of the Cancel 
and Tighten Algorithm. Therefore the overall running time of Cancel and Tighten is 
O(n2mlog(nC)) (i.e. an amortized time of O(n) per cycle canceled). We can further 
improve this by using dynamic trees [14] to get an amortized time of O(1og n) per 
cycle canceled and this results in an O(nm log n log(nC)) algorithm. 

Alternative Analysis: 
Bound 

A Strongly Polynomial 

In this section, we give another analysis of the algorithm. This analysis has the 
advantage of showing that the number of iterations is strongly polynomial, i.e. that 
it is polynomial in n and m and does not depend on C. The first strongly polynomial 
algorithm for the minimum cost circulation problem is due to Tardos [19]. 

Definition 3 An arc (v,  w) E E is €-fixed if f(v, w) is the same for all 6-optimal 
circulations. 

There exists a simple criterion for deciding whether an arc is t-fixed. 

Theorem 11 Let t > 0. Let f be a circulation and p be node potentials such that f 
is t-optimal with respect to p. If Icp(u,W) I 2 2nt then (v,w)is t-fixed. 

Proof: The proof is by contradiction. Let f' be an t-optimal circulation for 
which f '(v, w) # f (v,w). Assume that lcp(v,w) 1 2 2nt. Without loss of generality, 
we can assume by antisymmetry that cp(v,w) 5 -2nt. Hence (v,w) $ Ef, i.e. 
f (v,w) = U ( V ,  w). This implies that f'(v, w) < f (v,w). Let E< = {(x,y)  E E : 
f '(x, y )  < f (x,dl.  

Claim 12 There exists a cycle r in (V,E,) that contains (v,w). 
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Proof: Since (v,w) E E<, it is sufficient to prove the existence of a directed path 
from w to v in (V,E<).  Let S C V be the nodes reachable from w in (V,E<).  Assume 
v 6S. By flow conservation, we have 

However, f(v, w) - f'(v, w) > 0, i.e. f(w,v) - f'(w,v) < 0, and by assumption w E S 
and v 6S. Therefore, there must exists x E S and y $ S such that f (x,y)  -f'(x, y)  > 
0, implying that (x, y )  E E<.  This contradicts the fact that y 6S. 

By definition of E<,we have that E< Ejl. Hence, the mean cost of r is at least 
p(ff)  = -t(ff) = -t. On the other hand, the mean cost of r is (1 = Irl): 

a contradiction. 

Theorem 13 The Goldberg-Tarjan algorithm terminates after O(m2nlog n) itera-
tions. 

Proof: If an arc becomes fixed during the execution of the algorithm, then it will 
remain fixed since t(f )  does not increase. We claim that, as long as the algorithm has 
not terminated, one additional arc becomes fixed after O(mnlog n) iterations. Let 
f be the current circulation and let r be the first cycle canceled. After mn log(2n) 
iterations, we obtain a circulation f' with 

by Theorem 10. Let p' be potentials for which f '  satisfies the t(ff)-optimality con-
straints. By definition of I?, 

Hence, 

Therefore, there exists (v, w) E I'such that lcpl(v,w) 1 > -2724 f'). By the previous 
Theorem, (v,  w) is t(f ')-fixed. Moreover, (v,w) is not t(f )-fixed since canceling 
I' increased the flow on (v ,  w). This proves that, after mnlog(2n) iterations, one 
additional arc becomes fixed and therefore the algorithm terminates in m2nlog(2n) 
iterations. 
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Using the O(mn) algorithm for the minimum mean cost cycle problem, we obtain 
a O(m3n2 log n) algorithm for the minimum cost circulation problem. Using the 
Cancel and Tighten improvement we obtain a running time of O(m2n2 log n). And 
if we implement Cancel and Tighten with the dynamic trees data structure we get a 
running time of 0(m2nlog2n). 

The best known strongly polynomial algorithm for the minimum cost circulation 
problem is due to Orlin [18] and runs in O(m log n(m + n log n)) = O(m2 log n + 
mn log2 n) time. 
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