
MIT OpenCourseWare
http://ocw.mit.edu

6.854J / 18.415J Advanced Algorithms
Fall 2008��

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

18.415/6.854 Advanced Algorithms October 22, 1996

Lecture 11
Lecturer: Michel X. Goemans Scribe: Roberto De Prisco

Minimum Cuts

In this lecture we will describe an algorithm that computes the minimum cut (or
simply mincut) in an undirected graph. A cut is defined as follows.

Definition 1 Given a graph G = (V,E) and a subset S of V, the cut S(S) induced
by S is the subset of edges (i, j) E E such that 1 {i, j) ilSI = 1.

That is, 6(S) consists of all those edges with exactly one endpoint in S .
Given an undirected graph G = (V,E) and for each edge e E E a nonnegative

cost (or capacity) ce, the cost of a cut 6(S), is the sum of the costs of the edges in
the cut, that is

The minimum cut problem (or mincut problem) is to find a cut of minimum cost.
If all costs are 1 then the problem becomes the problem of finding a cut with as few
edges as possible.

Cuts are often defined in a different, not completely equivalent, way. Define a
cutset to be a set of edges whose removal disconnects the graph into at least two
connected components. Minimal cutsets (a minimal cutset C is a cutset such that
any proper subset of C is not anymore a cutset) can be seen to correspond to cuts 6(S)
for which the subgraphs induced by S and V -S are connected. Observe that only
minimal cutsets can be of minimum cost (among all cutsets) and that only cuts S(S)
for which both S and V - S induce connected components can be of minimum cost
(among all cuts) since the costs are assumed to be nonnegative. For this reason, the
problem of finding a cutset of minimum cost is equivalent to the problem of finding
a cut 6(S) of minimum cost, namely the mincut problem. From now on, we will only
look at cuts 6(S) (and not cutsets).

An important variant of the mincut problem is often considered. This is the
problem of finding the minimum cost cut separating two given two vertices s and t.
A cut 6(S) is said to separate s and t if only one of them belongs to S . We refer to
this problem as the minimum (s,t)-cut problem.

The minimum (s, t)-cut problem has been traditionally solved by means of network
flow algorithms. Indeed it can be reduced to a max flow problem. Given a source s

and a sink t of the graph G, it is known that1

MAX FLOW(s, t) = min c(6(S)).
S : s ~ s , t @ S

Notice that this result relates the value of the maximum flow from s to t and the value
of the minimum (s,t)-cut It does not specify any relationship between the minimum
(s,t)-cut itself (meaning the edges composing the cut) and the way the maximum flow
can be pushed into the graph. However, given a maximum flow, it is easy to obtain
the corresponding (s,t)-mincut. If you look at the residual graph corresponding to
the maximum flow, the set S of vertices reachable from S will induce a minimum
cut. By definition of the residual graph (and properties of maximum flows), the cost
of this cut is equal to the value of the maximum flow and thus it is a min (s,t)-
cut. On the other hand, the knowledge of a min (s, t)-cut does not help in finding
the actual maximum flow (not just its value but the flow on every edge). Indeed,
consider the following example. Let C*be the min (s, t)-cut value in G = (V,E) and
let us consider the graph G' = (V', El) where V' = {s'} u V and E' = {(s', s)) U E
with c(s', s) = C*. Then a possible minimum (s',t)-cut is &(is')). However this does
not give any more information on how the flow can be pushed from s' to t (than just
its value C*). So far no algorithm that finds a minimum (s, t)-cut without using a
reduction to the max flow problem has been discovered. We will see that for general
mincuts (ot separating two given vertices), the situation is different.

How can we find a minimum cut in an undirected graph? One possibility is to
choose a vertex s and compute the min (s, t)-cuts for every t E V - {s), and choose
the cut of minimum cost among all the cuts obtained. The fastest maximum flow
algorithms currently take slightly more than O(mn) time (for example, Goldberg and
Tarjan's algorithm [I]take O(mn log(n2/m)) time). Since we need to use it n times,
we can find a mincut in O(mn2 log(n2/m)) time. However, these n - 1 maxflow
problem are related, and Hao and Orlin [2] have shown that it is possible to solve all
of them in O(mn log(n2/m)) by modifying Goldberg and Tarjan's algorithm. Thus
the minimum cut problem can be solved within this time bound.

In this lecture, we will derive an algorithm for the mincut problem which is not
based on network flows, and which has a running time slightly better than Hao and
Orlin's. The algorithm is due to Stoer and Wagner [6], and is a simplification of an
earlier result of Nagamochi and Ibaraki [5]. We should also point out that there is a
randomized algorithm due to Karger and Stein [4] whose running time is O(n2 log3 n),
and a subsequent one due to Karger [3] that runs in O(mlog3 n).

We first need a definition. Define, for any two sets A, B of nodes of the graph,

It is clear that the maximum flow cannot be larger than the cost of any cut. This result says
that it is as large as it can be, i.e. as large as the cost of the minimum (s, t)-cut.

The algorithm is described below. In words, the algorithm starts with any vertex,
and build an ordering of the vertices by always adding to the selected vertices the
vertex whose total cost to the previous vertices is maximized. The cut induced by the
last vertex in the ordering is considered, as well as the cuts obtained by recursively
applying the procedure to the graph obtained by shrinking the last two vertices. (If
there are edges from a vertex v to these last two vertices then we substitute those two
edges with only one edge having capacity equal to the sum of the capacities of the
two edges.) The claim is that the best cut among the cuts considered is the overall
mincut. The formal description is given below.

Let vl be any vertex of G

for i = 2 to n
let vi the node of V \ S s.t.
c(S : {v}) is maximized (over all v E V \ S)
S :=S U {vi}

end for
if n = 2 then return the cut S({v,})
else

Let G' be obtained from G by shrinking v,-1 and v,
Let C be the cut returned by MINCUT(G')
Among C and 6({vn)) return the smaller cut (in terms of

cost)
endif

Figure 1illustrates how the algorithm works on an example.
The analysis is based on the following crucial claim.

Claim 1 {v,) (or {vl, vz, ...,vnWl)) induces a min (vnWl, v,)-cut in G. (Notice that
we do not know in advance vn-l and v,.)

From this, the correctness of the algorithm follows easily. Indeed, the mincut is
either a (v,-~, v,)-cut or not. If it is, we are fine thanks to the above claim. If it is
not, we can assume by induction on the size of the vertex set that it will be returned
by the call MINCUT(G').
Proof: Let v1, v2, ...,vi, ...,vj, ...,vn-lr vn be the sequence of nodes chosen by the
algorithm and let us denote by Aithe sequence vl, vz, . . . ,vi-1. We are interested in
the cuts that separate v,-1 and v,. Let C be any set such that v,-1 E C and v, @ C.
Then we want to prove that the cut induced by C satisfies

Figure 1: Illustration of the mincut algorithm.

Let us define vertex vi to be critical with respect to C if either vi or vi-1 belongs
to C but not both. We claim that if vi is critical then

where Ci = (Ai U {vi)) nC.
Notice that this implies that c(d(C)) 2 @(A,)) because v, is critical. Now let

us prove the claim by induction on the sequence of critical vertices.
Let vi be the first critical vertex. Then

Thus the base of the induction is true.
For the inductive step, let the assertion be true for critical vertex vi and let vj be

the next (after vi) critical vertex. Then

the first inequality following from the definition of vi, the second inequality from the
inductive hypothesis, and the last from the fact that vj is the next critical vertex.
The proof is concluded observing that A, induces the cut {vl, vz,. . ,v,-~) : {v,).

The running time depends on the particular implementation. Using Fibonacci
heaps we can implement each iteration in O(m+n log n) time and this yields a total
running time of 0(mn+n2log n).

References

[I] A.V. Goldberg and R.E. Tarjan, "A new approach to the maximum flow prob-
lem", Journal of the ACM, 35, 921-940, 1988.

[2] X. Hao and J.B. Orlin, "A faster algorithm for finding the minimum cut in a
graph", Proc. of the 3rd ACM-SIAM Symposium on Discrete Algorithms, 165-
174, 1992.

[3] D. Karger, "Minimum cuts in near-linear time", Proc. of the 28th STOC, 56-63,
1996.

[4] D. Karger and C. Stein, "An 0(n2)algorithm for minimum cuts", Proc. of the
25th STOC, 757-765, 1993.

[5] H. Nagamochi and T. Ibaraki, "Computing edge-connectivity in multigraphs and
capacitated graphs',, SIAM Journal on Discrete Mathematics, 5, 54-66, 1992.

[6] M. Stoer and F. Wagner, "A simple mincut algorithm", Proc. of ESA94, Lecture
Notes in Computer Science, 855, 141-147, 1994.

