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18.415/6.854 Advanced Algorithms November 21, 2000 

Lecture 18 

Lecturer: Michel X.  Goemans Scribe: Ahmed Ismail and Johnny Chen 

In the previous lecture, we discussed the Bar-Yehuda and Even 2-approximation algorithm for 
the vertex cover problem, and introduced the Generalized Steiner tree problem, and outlined a 2-
approximation algorithm of Goemans and Williamson which formulates the problem using duality 
which constructs both an integer solution and a dual solution of a relaxed version of the problem, 
and began the construction of the proof of correctness of the algorithm. 

1 The Generalized Steiner tree problem 

Problem 1 (Generalized Steiner tree problem) Given a graph G = (V,E )  with costs c (e) 2 
0,Qe E E, and a set of vertex pairs T & V x V, find a subgraph F of minimum cost such that 
Q (s, t )  E T, s and t are connected i n  F .  

As a linear program, this problem can be formulated as trying to determine the optimal solution 
OPT for 

min C c (e)x (e) , 
e EE 

such that 

where 

Rather than deal with this complicated integer linear program, Goemans and Williamson relax 
the problem by replacing the integer constraint (3) with a nonnegativity constraint, and therefore 
look for the solution LB which satisfies (1) subject to the constraints (2) as well as 

x ( e ) 2 0,Qe. 

Goemans and Williamson also consider the corresponding dual problem, 

such that 

Considering (1) and ( 5 )  together, we can obtain both a feasible set of edges F as well as a set of 
ys's satisfying (6), such that 

C c ( e )  5 2 C ys5 2 0 ~ ~ .  

The details of the algorithm to compute F and the ys's were provided in the previous lecture. 



2 Eliminating the ys's 

Our aim is to establish that (8) is valid for the Goemans-Williamson algorithm. However, before we 
resume our proof of its correctness, we note that although we keep track of the ys's for the purpose 
of establishing correctness, we do not actually use the ys's as variables when implementing this 
algorithm. Instead, we choose to keep track of d (i), which is defined as 

d (4 = C Ys, 

for every vertex i. Then, for an edge (i, j) E 6 (S) , where i and j belong to different connected 
components of F, 

The goal of the dual program is to maximize each ys while still obeying the constraints implied by 
( 6 ) ;if we choose to ignore the individual ys9s, we can try to minimize c, - d (i) - d ( j )  instead. 

Thus, our algorithm proceeds as follows. 

Initialize [F= 0; C = {{i) : i E V); d(i) t 0 Vi E V; k t 1;(ys t 0 V S  E F)]; 


While FnC # 0 do: 


(see observation in notes below) 


cij - d (i) - d (j)
c = min ( min min cij - d (i) - d ( j )

iECP7jECq7~#q,Cp,Cq€F 2 ' iECp7jECq7~#q,Cp€F7Cq#F 

Let ek t (i,j) attain this minimum. 

F o r C € C n F :  

For i E C: d(i) t d(i) +c;  

F t F u {ek); 

k t k + l ;  

Update the connected components C; 

F' t F ;  

For l t k - 1down to 1: 

if F' - {el) is feasible then F' tF' - {el); (delete step) 

Output F'. 

Note that the delete step in the algorithm, as written above, is easier for the purposes of the 
proof. However, we do not need to perform the delete in this manner: although we can cycle through 
the edges in the order in which we added them, we can also attempt to remove them in any order. 
Either route will yield the unique solution which has paths between our pairs of vertices s's and t's, 
which will be the same result as using the condition 

F' = {e E F : F \ {e) is not feasible) . 



3 Correctness of the algorithm 

Our goal is to establish the following result. 

Theorem 1 The algorithm of Goemans and Williamson returns a feasible set of edges F and a set 
of ys 's such that 

C c ( e )  5 2 C  ys 520PT.  (9) 

In our previous lecture, we established the following lemma. 

Lemma 2 If C nF = 0, then F is feasible. 

Thus, since by construction the algorithm only terminates if C n F = 0, we know that any 
resulting F obtained is feasible. We thus focus on establishing the inequality (9). Let us first define 
two sets 0 and E as follows. 

Definition 1 ~ e t O = C n . F a n d E = C n F ,  so t h a t C = E U O .  

We now construct a graph H = (C, E (H))  by shrinking all the connected components into 
vertices. In this construction, the set E (H) is 

Since H has no cycles, it is a forest, and therefore 

where dv is the degree of vertex v in the forest H.  If H is a single tree, then equality holds. We can 
ignore all vertices v such that dv = 0. We now want to prove the following result. 

Lemma 3 There does not  exist v E E such that dv = 1. 

Proof: Suppose that 3v E E : du = 1,where v corresponds to the connected component C ,  and let 
el, be the unique edge corresponding to this vertex. Since we could not remove ek during the delete 
step, there exists an edge (s,t ) E T such that s E C,  t 4C. However, this implies that 

which is clearly a contradiction. Thus, there does not exist v E E such that d, = 1. 
This lemma lets us say that 

Cancelling like terms from the outside of (10) g'lves us 

Now, as we know that 

we can exchange the order of summations to say that 

Now it remains to prove the following lemma. 



Lemma 4 During the execution of the algorithm, 

Proof: The proof of this is carried out by induction on k .  The base step is trivial, since we 
initialize ys = 0 at the start of the algorithm. 

Then, during an iteration, ys increases by an amount e for each S E F nC, so the right-hand 
side of the inequality increases by 2c IFnCI. By the same reasoning, the left-hand side increases by 
CstTncc 16(S)nF'I . Thus, we want to  show that 

However, we know by construction that FnC = 0 ,  and when v E 0, 16 (S)nF' I is just the degree 
du of node v in H. As a result, we have 

which is a weaker form of the inequality (11). This completes the proof of (12), and with it, of the 
correctness of the algorithm. I7 

4 Implementation and generalizations 

This approach also works and gives a bound for problems such as 

for other collections of sets F,F = {S : IS1odd) (for perfect matchings) or F = {S: IS nA1 # IS nBI). 
With the following implementation considerations, the algorithm runs in 0(n2 1og n) time. 

The Union-Find data structure can be used to  update connected components (in roughly linear 
time) . 
Instead of using a double loop to find e (which would take m2 time), we can create a "time-
axis," keep track of the time when each edge becomes tight, presuming nothing else in the 
graph changes. 

Each iteration (there are n of them) can be done with fewer than n priority queue operations, 
since modifying a connected component necessitates changing the time of up to n edges. 
Thus there are at most 0 (n2) priority queue operations, and the total running time will be 
O (n2log n) . 


