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1 L P  Duality 

Last time, we proved the strong duality theorem. Let P and D be the following pair of dual 
linear programs: 

( P )  z* = min{cT x : Ax = b,x 2 O), 
(D) w * = m a ~ { b ~ ~ : ~ ~ ~ < c ) .  

Theorem 1 (Strong duality) If P or D i s  feasible then z* = w*. 

1.1 Rules for Taking Dual Problems 

We can also express the strong duality theorem for linear programs in other forms. This is 
described in the main lecture notes. For example, if the primal linear program is: 

Tz = min cl X I +  cTx2+cFx3 s.t. 

-41x1 + 4 2 x 2  + 4 3 x 3  = bl 

A2151 + A2252 + A2323 2 b2 

A31~1+A32~2+A33~3 < b3 

X I >  0 ,  x2 < 0 ,  X3 UIS, 

where Aij is a mtrix of size mi x nj (and thus x j  E Enj) and UIS denotes no restrictions 
("unrestricted in sign7') on these variables, then the dual is: 

w = max blTyl + bFy2 + bT3 Y3 

where thus yi E Rmi, and strong duality holds between them. 

2 Size of LP 

In order to be able to discuss the complexity for solving a linear program, we need first to 
discuss the size of the input. We assume that every integer data is given in binary encoding, 
thus for n E Z,we need 



bits, for u E ZP, we need 

bits, and for A E Znxm,we need 

bits. As a result, to represent all the data of a linear program, we need a size equal to 

The above size is not very convenient when proving the complexity of a linear program-
ming algorithm. Instead, we will be considering another size, defined by 

where detmax= max 1 det (A') I over all submatrices A' of A, bmax = maxi lbi 1 and cmax= 

maxj Icj1. 
In the next proposition, we show that L is smaller than size(LP), which implies that 

if we can prove that an algorithm has a running time polynomially bounded in terms of L 
then it will certainly be polynomial in size(LP) as well. 

Proposition 2 L < size(LP). 

The proof of the proposition is in the lecture notes. In the proof, the following key 
lemma is needed. 

Lemma 3 If A E Znxn then idet(A)I 5 2size(A)-n2- 1. 

Proof: Recall that for A = [al,aa, ...,ak ] ,I det (A)I can be visualized as the volume of the 
parallelipiped spanned by the column vectors. Hence, 

From the definition of L, the following remark follows; this is what we will need mostly 
when analyzing running times or sizes. 

Remark 1 didmax * bmax * cmax * 2mfn < 2L. 



3 Complexity of L P  

Here is the decision problem corresponding to linear programming. 

LP: Given A, b, c, A, is there an x :Ax = b, x 2 0, cTx 5 A? 

To show that LP is in NP, we need to be able to provide a concise (i.e. polynomially 
bounded in the size of the input) certificate for yes instances. A feasible point of cost less 
or equal to X will clearly be a certificate, but will it be concise? 

Claim 4 LP E N P  

We now show that if we take not just any feasible solution, but a basic feasible solution, 
then its size will be polynomially bounded in the size of the input. 

Theorem 5 Let x be a vertex (or basic feasible solution) of Ax = b, x 2 0. Then xi = F. 
for i=l,...,n where pi,q E N and pi < 2L and q < 2L.  

Proof: Since x is a vertex, then x is a basic feasible solution with basis B such that 
XB = ~ i l band XN = 0 (notice that As is square). By Cramer's rule: 

where cof (A) is a matrix whose entries are all determinants of submatrices of A. Letting 

q = det (Ag), we get that q 5 detmax < 2L and pi 5 m detmax bmax < 2L. 
Now, to prove Claim 4, for yes instances, the certificate will be a vertex of {x : Ax = 

b,x 2 0) such that cTx 5 A. However, to be precise, we also have to deal with the case 
in which the LP is unbounded, since in that case, there might not be any such vertex. 
But in that case, we can give a certificate of unboundedness by (i) exhibiting a vertex of 
{x : Ax = b, x 2 0) (showing it is not empty, and it is concise by the above theorem) and 
(ii) showing that the dual feasible region {y : 5 c) is empty by using Farkas' lemma 
and exhibiting a vertex of Ax = b, x 2 0, cTx = -1 which is also concise by the above 
theorem. 

Thanks to duality, we can also show that: 

Claim 6 LP E co- NP.  

Indeed, for no instances, we can use strong duality and exhibit a basic feasible solution 
of ATy 5 c s.t. bTy > X (or show that {x 2 0 : Ax = 6) is empty using Farkas' lemma). 
In the case when {x : Ax = b, x 2 0) is feasible, the correctness follows from strong duality 
saying that 

min{cTx: Ax = b,x > 0) = rnax{bTy : ~ ~ y5 c). 

Thus, L P  E NP nco -NP which makes it likely to be in P. And indeed, LP was shown 
to be polynomially solvable through the ellipsoid algorithm. 

The Ellipsoid algorithm was proposed by the Russian mathematician Shor in 1977 for 
general convex optimization problems, and applied to linear programming by Khachyan in 
1979. 



Figure 1: One iteration of the ellipsoid algorithm. 

4 The Ellipsoid Algorithm 

The problem being considered by the ellipsoid algorithm is: 

Given a bounded convex set P E Rn find x E P. 

We will see that we can reduce linear programming to finding an x in P = {x E Rn : 

Cx 5 d). 
The ellipsoid algorithm works as follows. We start with a big ellipsoid E that is guar-

anteed to contain P. We then check if the center of the ellipsoid is in P. If it is, we are 
done, we found a point in P. Otherwise, we find an inequality cTx 5 diwhich is satisfied 
by all points in P (for example, it is explicitly given in the description of P) which is not 
satisfied by our center. One iteration of the ellipsoid algorithm is illustrated in Figure 1. 
The ellipsoid algorithm is the following. 

Let Eo be an ellipsoid containing P 

while center ak of Ek is not in P do: 

- Let cTx 5 cTak be such that { x  :cTx 5 cTak)2 P 
- Let Ek+lbe the minimum volume ellipsoid containing Ekn { x  : cTx 5 cTak} 
- k + k + l  

The ellipsoid algorithm has the important property that the ellipsoids contructed shrink 
in volume as the algorithm proceeds; this is stated precisely in the next lemma. This means 
that if the set P has positive volume, we will eventually find a point in P. We will need to 
deal with the case when P has no volume (i.e. P has just a single point), and also discuss 
when we can stop and be guaranteed that either we have a point in P or we know that P 
is empty. 

VoW%i-1)Lemma 7 < e - k .  



Before we can state the algorithm more precisely, we need to define ellipsoids. 

Definition 1 Given  a center  a, and a positive definite ma t r i x  A, t he  ellipsoid E(a, A) i s  
defined as  {x E Rn : (x - a ) T ~ - l ( x- a) 5 1). 

One important fact about a positive definite matrix A is that there exists B such that 
A = B-lB, and hence A-' = B - ~ ( B - ' ) ~ .  Ellipsoids are in fact just affine tansformations 
of unit spheres. To see this, consider the (bijective) affine transformation T : x + y = 
(B- ' )~(x- a). It maps E(a,A) -t {y : yTy 5 1) = E(0,I). 

We first consider the simple case in which the ellipsoid El,is the unit sphere and that the 
inequality we generate is xl 2 0. We claim that the ellipsoid containing Ekn {x : xl 2 0) 

Indeed, if we consider an x E Ekn{x :xl 2 0), we see that 

In this specific case, we can prove easily lemma 7 (we prove a slight weakening of it by 
just showing an upper bound of e-'I2("+l)) : 
Proof: The volume of an ellipsoid is proportional to the product of its side lengths. Hence 
the ratio between the unit ellipsoid El, and Ek+1is 

(")( n2 )+
V~l(Ek+l) - n f l  n2-1-

VolEk 1 

where we have used the fact that 1+x 5 ex for all x. 


