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Lecturer: Michel X.  Goemans 

1 Polynomial Approximation Schemes 

Definition 1 Polynomial Approximation Scheme (PAS) is a family of approximation algo- 
rithms such that A, E {A, : t > 0 )  runs in  polynomial time in  the size of the input (assume 
E fixed) and returns a 1+ E approximate solution. 

Definition 2 A Fully Polynomial Approximation Algorithm (F'PAS) is a family of algo- 
rithms such that A, is a (1+E)-approximation algorithm with running time polynomial in  
input size and 1 / ~ .  

2 Scheduling Problem: PI1C,,, 

Definition 3 The Scheduling Problem (PIICmax):Given n jobs and m machines where 
each job j takes p j  processing time and completes at time cj, assign jobs to each machine 
minimizing the time Cmaxfor the last machine to terminate its last job. 

Cmax=T*= min max cj 
3 

2.1 The Approach 

Definition 4 A (1+t) relaxed decision procedure for PI1 Cmax is an algorithm that, given T, 
either says that there is no schedule with Cmax5 T or gives a schedule with Cmax5 T ( l + t )  

Initially T* is between L and 2L,  where L = m a x ( ~ z ,maxpj), so let Tl and T2 be 
L and 2L respectively. We're now going to do a logarithmic binary search on the possible 
values for T* until we are within E of T*. 

Logarithmic Binary Search: If we know that T* is between Tl and T2, the next 
value we will check is d m ,which is the midpoint of Tl and T2on the logarithmic scale. 
If our (1+ E )  relaxed decision procedure returns NO on d m ,we replace T2with d m  
else we replace Tl with d m  and continue until we are within E of T*. 

Initially, 2= 2. After k iterations, log T2 -log TI = 2-k log 2. So if we want 2 5 1+E' ,  

2k log 2/ log(l+ E') ,k log(1og 2/ log(1+el)). So, with k iterations, where k = O(1og $), 
we can get TI and Tz with properties: T2 /TI 5 1+ E' , there is no schedule with Cmax5 TI, 
and we have a schedule with Cmax5 T2(l+et) or T2(l+ ~ / 2 )5 Tl(I+€') (1+ ~ / 2 )5 TI(I+€). 

2.2 A Relaxed Decision 

Definition 5 A (1+t) relaxed decision procedure for Pll Cmax is an algorithm that, given T, 
either says that there is no schedule with Cmax5 T or gives a schedule with Cmax5 T ( l +  E )  



Remark 1 In the preceding definition, it is possible that the procedure returns NO, when 
a schedule does exist for Cmax< T(1+ E). 

We will use a relaxed decision procedure to solve the scheduling problem. Suppose that we 
have a (1+ €)-relaxed decision procedure for jobs with p j  1 tT. Then we do the following: 

1. Remove all jobs with p j  < ET. 

2. Apply the (1+€)-relaxed decision procedure for the remaining jobs. 

3. If the procedure returns NO, we return NO. If we get a YES, use any method to try 
to add in all of the small jobs without going beyond T(1+ t). If we can, return that 
schedule else return NO. 

It is clear that if there is no schedule satisfying Cmaz5 T on some subset of the jobs, 
then we cannot hope for one on all of the jobs. Also if we cannot include a job pi < ET 
then that implies that each machine is busy at time T(1+ E) -pi > T, so there can 
obviously be no schedule that finishes in time T. 

Consider a (1+ E) relaxed decision procedure for the case where 'dpj 2 ET. We want to 
round p j  to a qj that is of the form ET+~ E ~ Tfor some integer k, that is 

Then p j  satisfies the following inequality: 0 5 p j  -qj < E ~ T .We output in polynomial time 
a schedule for {qj} with Cmax5 T or else say NO. 

NO: return NO. 

YES: return schedule. We can do this because ET5 pj  +- qj 2 ET+- There are at 
most $ jobs per machine. Therefore Cmaxincreases by at most ~ ( E ~ T )= ET. 

Now consider instances in which there are at most P jobs per machine and at most Q 
different processing times. In the above case, we take P = $ and Q = $. The problem is 
to find a schedule with Cmax5 T or claim that no such schedule exists, in polynomial time. 

Let (rl,. ..,rQ)be an assignment of jobs on a single machine. Each ri is the number of 
jobs of value pi in the assignment. Let the space of all valid assignments be 

We define a function f : +N,such that f (al,. ..,nQ) is the minimum number of 
machines needed to process ni jobs of value pi, i E (1, .. . ,Q) within time T. 

f (nl, ... ,nQ) = 1+min f (nl - rl, . ..,n~ - r ~ )
rER 

where 0 < ni < iti = number of jobs of processing time pi. 
We know that IRI 5 PQand i{(nl,. .. ,nQ}I < nQ. By hypothesis, both of these bounds 

1 1 
are constant. Therefore the total running time is 0 ( n Q ~ )= 0 ( n Q p Q )= 0 ( n ~$2).This 
is polynomial for fixed 6 .  


