MIT OpenCourseWare
http://ocw.mit.edu

6.854J / 18.415J Advanced Algorithms
[Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

18.415/6.854 Advanced Algorithms December 3, 2001

Lecture 21

Lecturer: Michel X. Goemans

1 Polynomial Approximation Schemes

Definition 1 Polynomial Approzimation Scheme (PAS) is a family of approzimation algo-
rithms such that A € {A¢ : € > 0} runs in polynomial time in the size of the input (assume
€ fizred) and returns a 1 + € approzimate solution.

Definition 2 A Fully Polynomial Approzimation Algorithm (FPAS) is a family of algo-
rithms such that A, is a (1 + €)-approzimation algorithm with running time polynomial in
input size and 1/e.

2 Scheduling Problem: P||C)z

Definition 3 The Scheduling Problem (P||Cynaz): Given n jobs and m machines where
each job j takes p; processing time and completes at time c;j, assign jobs to each machine
minimizing the time Cypqp for the last machine to terminate its last job.

Chaz = T* = minmaxc;
J

2.1 The Approach

Definition 4 A (1+e€) relazed decision procedure for P||Cinaz is an algorithm that, given T,
either says that there is no schedule with Cyae < T or gives a schedule with Chper < T(14€)

Initially 7 is between L and 2L, where L = mam(E%,maxpj), so let 77 and T, be
L and 2L respectively. We're now going to do a logarithmic binary search on the possible
values for T* until we are within € of T*.

Logarithmic Binary Search: If we know that 7* is between 77 and T5, the next
value we will check is /7775, which is the midpoint of T} and T5 on the logarithmic scale.
If our (1 + €) relaxed decision procedure returns NO on /115, we replace Ty with /1T
else we replace T with /11T and continue until we are within e of T™.

Initially, %2 = 2. After k iterations, log T —log T} = 2 ¥ log 2. So if we want %2 <1+¢€,
2K ~ log2/log(1+€) , k ~ log(log 2/ log(1+¢')). So, with k iterations, where k = O(log ;1;),
we can get 77 and T, with properties: T5 /T < 1+ €, there is no schedule with Cj,4, < T,
and we have a schedule with Cp,qr < To(14+€') or To(1+€/2) < Ti(1+€')(1+€/2) < Ti(1+e€).

2.2 A Relaxed Decision

Definition 5 A (1+e€) relazed decision procedure for P||Cpagz ts an algorithm that, given T,
either says that there is no schedule with Cpae < T or gives a schedule with Cee < T'(1+€)

21-1

Remark 1 In the preceding definition, it is possible that the procedure returns NO, when
a schedule does exist for Cpar < T(1 + €).

We will use a relaxed decision procedure to solve the scheduling problem. Suppose that we
have a (1 + €)-relaxed decision procedure for jobs with p; > €T". Then we do the following:

1. Remove all jobs with p; < €T
2. Apply the (1 + €)-relaxed decision procedure for the remaining jobs.

3. If the procedure returns NO, we return NO. If we get a YES, use any method to try

to add in all of the small jobs without going beyond T'(1 + €). If we can, return that
schedule else return NO.
It is clear that if there is no schedule satisfying C,,,, < T on some subset of the jobs,
then we cannot hope for one on all of the jobs. Also if we cannot include a job p; < €T’
then that implies that each machine is busy at time 7'(1 + €) — p; > T', so there can
obviously be no schedule that finishes in time T.

Consider a (1 + €) relaxed decision procedure for the case where Vp; > €I'. We want to
round p;j to a g; that is of the form €T' + ke?T for some integer k, that is

T 2T < 1
qj Iileaf%({sﬂke T < p;}

Then p; satisfies the following inequality: 0 < p; —¢; < €2T. We output in polynomial time
a schedule for {g;} with Cye; < T or else say NO.

e NO: return NO.

e YES: return schedule. We can do this because €' < p; = ¢; > €T' = There are at
most 1 jobs per machine. Therefore Cpn,q increases by at most L(e?T) = €T

Now consider instances in which there are at most P jobs per machine and at most @)
different processing times. In the above case, we take P = % and Q = ;15 The problem is
to find a schedule with Cjq < T or claim that no such schedule exists, in polynomial time.

Let (r1,...,7q) be an assignment of jobs on a single machine. Each r; is the number of
jobs of value p; in the assignment. Let the space of all valid assignments be

R={(ry,...,mq) € N¢ ?Zﬁpé < T}

We define a function f : N¢ — N, such that f(n,. ..,ng@) is the minimum number of
machines needed to process n; jobs of value p;, 7 € {1,...,Q} within time 7.

osmi@) =1+ mi R T
f(n,...,ng) +g:g}111f(m T nQ — Q)

where 0 < n; < k; = number of jobs of processing time p;.
We know that |R| < P and |{(n1,...,n¢}| < n9. By hypothesis, both of these bounds

1
are constant. Therefore the total running time is O(n9R) = O(n?P%) = O(ne]T%f_f). This
is polynomial for fixed e.

21-2

