
MIT OpenCourseWare
http://ocw.mit.edu

6.854J / 18.415J Advanced Algorithms
Fall 2008��

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

2

18.415/6.854 Advanced Algorithms 28 November 2001

Lecture 20
Lecturer: Michel X. Goernans Scribe: David Liben-Nowell and Bill Thies

Review

In the previous lecture, we were considering the LIN-2-MOD-2 problem, which is as follows. We are
given a set of equations, and our goal is to satisfy as many of them as possible:

xi + X j {0,1) (mod 2)

That is, each equation states that the sum of exactly two variables is congruent (modulo 2) to either
0 or 1. Restricting our attention to the case when each sum is congruent to 1, this problem is
equivalent to the following instance of MAX-CUT. Given a graph G = (V,E) with a vertex u for
each variable x and an edge (vi, ~ j)for each equation xi + x j 1 (mod 2), find the set of vertices
S C V that maximizes the number of edges crossing the boundary of the set:

max d(S)
scv

where d(S) = IS(S)I is the number of edges crossing -&.om S to V \ S

We then established the following upper bound (UB) for MAX-CUT:

We will refer to this maximization problem as SDP, which stands for "semi-definite programming"
as we will see later. In the case when p = 1, UB is clearly equal to the value of the maximum cut;
we showed that for larger p, the expression above still remains an upper bound. Finally, we used
this expression to sketch out a 0.878-approximation algorithm for MAX-CUT. In this lecture, we
formulate the details of this algorithm and prove its correctness.

A 0.878-Approximation Algorithm for Max-Cut

The 0.878-approximation algorithm that we consider is due to Goemans and Williamson [2]. An
outline of the algorithms is as follows:

Algorithm for Max-Cut :

1. Solve the SDP problem (Equation 3) to obtain vectors vi.

2. We'd like to separate the vectors into two groups that are "maximally separated" in order to
determine the cut S c V. As discussed in the last lecture, we can do this with a hyperplane
in RP, and split the vectors based on which side of the hyperplane they fall. However, since we
can rotate all of the vectors vi without changing the goodness of the solution, it is not a good
idea to fix a single hyperplane to do this separation since some cases will elicit a poor split.

Instead, we select a unit vector r uniformly at random from the p-dimensional sphere Sp-l =
{x E RP : llxll = 1). (We denote this sphere by Sp-l since Sl is a circle in two dimensions.)

Figure I: One can select a point uniformly at random from the surface of S2,the three-dimensional
unit sphere, by choosing uniformly at random 8 from [0,2;lr]and h from [-I, 11and then projecting
the point horizontally onto the surface of the sphere.

3. Select the cut S as those vectors which fall on one side of r: S = {i E V : r vi 4 0).

There are three issues in the above algorithm that we need to address. In Section 5, we present
a method for solving the SDP problem as required in step 1. In Section 3 we show how to randomly
select the unit vector r as required in step 2, and in Section 4 we analyze selection of the cut to
show that it is, in fact, a 0.878-approximation algorithm.

3 Choosing a Random Vector
It is not entirely trivial to choose a vector that is uniformly distributed across the points of a
multi-dimensional sphere. For instance, in three dimensions, choosing both latitude and longitude
coordinates uniformly at random will not yield points that are uniformly distributed across the
surface of the earth. This is because a given range of latitude covers a smaller and smaller portion
of the earth's surface as one nears the poles-thus, if latitude were chosen uniformly, more points
would end up near the poles than near the equator.

3.1 3-D Solution

For the case of three dimensions, a uniform spherical distribution can be obtained by choosing
different coordinates uniformly at random. These coordinates are 1) an angle 8 E [O,27r]and 2) a
height h E [-I, 11. The random vector can then be obtained by projecting horizontally onto a sphere
from the corresponding position on an enclosing cylinder (see Figure 1). In other words, one can
take 8 as the longitude and asin(h) as the latitude.

3.2 General Solution

In the general case, one can generate r from Sp-l uniformly at random by choosing each coordinate
according to N(0 ,I), the normal distribution with mean 0 and standard deviation 1. Using oc to
denote proportionality, we have by the definition of a normal distribution that:

We can see that this gives the desired result if we consider the normal distribution in p dimensions:

f (XI,x2 , .. .xp) ce-+(x:+":+-.-+x;) (5)

Figure 2: Two vectors ui and uj with rin, the component of the random vector r which lies in the
plane of ui and uj.

where c denotes some constant. Noting that the distance of any point from the origin is d =

we can see that the distribution depends only on d instead of the position

along any given axis:
-4d2

f (dl ce (6)

Thus, selecting each coordinate from this distribution will give vectors that are uniformly distributed
within the unit sphere Sp-l.

4 Analyzing the Algorithm
We now turn our attention to proving that our choice of S = {i E V : r . ui > 0) does yield a
0.878-approximation algorithm for MAX-CUT,given that vi are a solution to SDP (Equation 3) and
r is chosen randomly as described above. As a first step, we will need a closed form expression
for the expected value of the cut, given our random choice of r. For this, we turn to the following
theorem:

Theorem 1 F o r any set of u n i t vectors Vi, E[d(S)] = tEx{i,j)
Proof: Let us introduce an indicator variable Iijwhose value is 1 if (i,j) is in the cut and 0
otherwise. Then we have that, by the definition of d and of expectation:

Now let us consider this last probability-that exactly one of a pair of vertices i and j are contained
in S. This will be the case if the unit vectors ui and uj were separated by the hyperplane orthogonal
to our random vector r . Let us split r up into two components: 1)rin,the component that is in the
plane of vi and vj, and 2) rout,the component that is orthogonal to ui and uj. We are not concerned
with rout because its dot product with ui and uj is zero; therefore, our decision as to whether or not
to include i and j in S depends only on ri,.

Thus, we restrict our attention to ri, (see Figure 2). Because r was chosen by a spherically
symmetric distribution, we know that ri, is uniformly distributed within a circle in the space spanned

Figure 3: The segment S T is orthogonal to Tin, and the angle 9 is measured between ui and uj.

by ui and uj. (It might not be S1,the unit circle, since rin could be shorter than 1. However, this
does not affect the proof since we are only interested in the direction of Tin.)

Now, our cut will separate i and j if and only if ui and uj fall on opposite sides of the segment S T
which is orthogonal to Tin (see Figure 3). This is a probability that is straightforward to compute.
Let 8 denote the angle between ui and vj. Since both ui and vj are distributed uniformly within
the circle, 8 is distributed uniformly within [O,27~].And since Tin, and therefore the endpoint T , is
oriented at an angle with a uniform distribution between [0,2;rr],we can see that T will fall within
9 with a probability of 9 / 2 ~ .But since S T will also separate vi and uj if S falls within the angle 9,
the probability that vi and uj are separated is 2 0 1 2 ~= 8 / ~ .Noting that vi .vj = cos(0) because vi
and uj are unit vectors, we have that 8 = UCOS(U~.vj) and thus P r [(i,j) E 6(S)] = UCOS(U~ .vj)/T as
desired.

This yields the following corollary, which seems quite surprising:

Corollary 2 Fixing p and allowing the ui's t o vary, define

acos(vi - vj)
Z = max C

7i-
(i,j)€E

Then Z is equal to OPT, the optimal value of MAX-CUT.

Proof: Weshowthat Z S O P T and Z 2 O P T :

acos(vi .vj)Z 5 O P T because, by Theorem 1,C(i,jtE ad
is the expected value of a cut for a given

set of vi's. Thus, for the set of vi's yiel ing the maximum, Z , there must be some cut with a
value at least as great as the expected (average) value, and this value can be at most OPT.

To show Z 2 OPT, consider the elements S of the optimal cut. Select a unit vector w in Rp,
acos (v i -w j)and set ui = w if i E S and ui = -w otherwise. Then C(i,j)EE = O P T since ~i and

vj are opposite (with UCOS(U~. vj) = T)for edges (i, j) across the cut, but they are identical
(with ~ C O S (U ~.vj) = 0) for other edges.

I7
Thus, we have seen that we could solve the MAX-CUTproblem by solving Equation 7, but (as

far as we know) this can't be done in polynomial time. Instead, we would like to solve the easier
SDP problem in Equation 3, which can be done in (almost) polynomial time, and then use the
randomized cut to obtain an approximation of the optimum. We formalize the correctness of this
approach with the following theorem:

Figure 4: The linearized approximation compared to the exact objective hctiolz. The original
objective function is always at least 0.878 as great as the linearized version,

Theorem 3 For any set of vectors v i :

where a = r n i n x E [- l f l l ~rn 0.87856

Proof: The &st equality is from Theorem 1and included only for clarity. The inequality holds
term-wise on each component of the sum, as we can show with simple algebraic manipulation:

aces(s)/7r
(1- vi u j) / 2

(1 -4 1 2

This inequality is shown graphically in Figure 4.
1-vi .v -Now, if we could solve the SDP problem, we would obtain U B = max C(i,jlEE I. Instead

consider that we solve SDP within some margin of error e , since finding the optmal solution might
require more than polynomial time, but we can still find a nearly-optimal solution. Then, by
Theorem 3, we have that our randomized algorithm produces E[d(S)]2 a(1-6)U B 2 0.878 * OPT
for sufficiently small c. Thus, our algorithm is a 0.878-approximation algorithm for MAX-CUT.

As an extension, we could generalizethe problem to consider any instance of L I N - ~ - M o D - ~(above
we consider only equations congruent to 1,whereas LIN-Z-MOD-~also allows equations congruent to

l+vi.vj term0). This simply involves modifying the objective function in the SDP problem to add a
for every equation xi +xj 0 mod 2. These terms will have an expected value of 1-acos(vi.u j) / r
instead of acos(vi .v j) / r , but the approximation guarantee will be preserved since 1-acos(z) / r is
at least as great as a(l +x)/2 in [- 1,1] (see Figure 5) .

Remarks. We conclude the analysis with a few remarks about work related to the algorithm:

1. Feige and Schechtman [I]identified graphs G, = (V, E) such that inf, OPTIUB = a B

0.87856. This shows that our analysis of the algorithm is tight. That is, given our estimation of
the upper bound U B ,we cannot do better than an a-approximation algorithm on every input,

5

Figure 5: The linearized approximation compared to the exact objective function for equations
congruent to 0 in the original L I N - ~ - M o D - ~problem. The original objective fundion is still at least
0.878 as great as the linearized version.

since otherwise there would be an instance of G, for which we would exceed the optimum.
However, this does not preclude there being tighter estimations of UB that would allow a
better approximation algorithm.

2. 	Hhtad [3] established that there is no (16/17+ E)-approximation algorithm for MAX-CUTfor
all E > 0 unless P =NP. Given that 16/17 w 0.942, this leaves a gap down to 0.878 between
which it is not known where the limit of approximability lies. However, the gap is smaller for
LIN-~-MoD-~,for which Hgstad found that there is no (11/12 + E)-approximation algorithm
(11/12 R 0.916).

3. 	The algorithm given above is a randomized one; it is messy to obtain a deterministic algorithm
instead. As in the last lecture, the method of conditional expectations can be applied. However,
it is more complicated because the vi7s do not have discrete coordinates; rather, they can
assume continuous values instead. A technique for derandolnizing the algorithm is described
in [4].

How do we solve the SDP?
The last missing piece in the algorithm is a mechanism for solving the SDP:

We will sketch a solution to this problem based upon an extension of a polynomial-time algorithm
for linear programming -either ellipsoid or interior point suffices. (For concreteness, we will focus
on this particular program rather than the more general class of semidefinite programs (SDPs) that
we can solve in this way.)

For a matrix M, let M 0 denote that M is positive semidefinite. Recall from linear algebra
that, by definition, we have M 0 Va aTMU 2 0.

Consider a matrix Y E RnXnso that Yij = vi .vj for 15 i,j 5 n. Thinking about this matrix,
we can reformulate the program (10) as follows:

1-Yij
max -

2
(G j)EE

set. Yii = 1
y. . = y..

23 3 2

Y k 0.

(Generally, a semidefinite program has a linear objective function, linear constraints on Y, and the
restriction that Y 0 be symmetric.)

Claim 4 Programs (10) and (11) are equivalent.

Proof: Given a solution vl ,... ,v, to (lo), we produce a solution to (1I) by setting j = vi .vj.
All of the constraints of (11) are satisfied:

Y,i = vi .vi = llvill = 1by the constraint of (10).

Yij = vi vj = V j vi = Yji by the commutativity of inner product.

For any vector a ,

since xiaivi is a scalar. So Y 0.

Given a solution Y to (l l) , we produce the vectors vi as follows. Recall from linear algebra that
Y 0 iff there is a Cholesky factorization Y = VVT, where V E RnXP,where p = rank(Y) 5 n.
Take as vector vT the ith row of V. Then vi - vj = (VvT)ij = Y,j. By the constraint of (11) that
Yii = I , we have the desired condition that llvi 1 1 = 1.

So any feasible solution to one program can be converted to a feasible solution to the other
program, where Xj = vi .vj, and thus the values of the objective functions are also identical. Thus
the programs are equivalent.

Cholesky factorization can be accomplished in O(n3) time by Gaussian elimination. So we now
need only solve version (11)of the program. Observe that the semidefinite program is actually
almost a linear program: the only constraint that doesn't fit into a linear program is Y k 0, i.e.,
aTYa = xixjaiajXj 2 0 for every a. But this is a linear constraint for any particular a; there
are just infinitely many such a's, and therefore infinitely many linear constraints.

Observe that the set of feasible solutions to the SDP is convex: if A and B are feasible, then
AA + (1- A) B is trivially symmetric and has ones on its diagonal, and, for any a,

so long as A E [0,11, since A, B 0. (This is a special case of convex programming - a linear
objective function over a convex set.)

We can solve the SDP by adapting interior point or ellipsoid:

[interior point.] In LP, we'd added a penalty function p Cjlog(xj) to our objective function;
for SDP, we add the penalty plog(det(Y)) = p C j log(Xj). (Y is symmetric and positive
semidefinite iff all of Y's eigenvalues are positive; det(Y) 2 0 bounds Y's eigenvalues away
from 0.)

The mantra, which is only partially false: "SDP is LP over the eigenvalues."

a [ellipsoid.] We need to be able to answer the question "is Y feasible?", and, if not, produce a
violated constraint. We can do this by computing the eigenvalues of Y; if X j < 0, then take
a = vj the corresponding eigenvector. Then a T y a < 0, violating Y t0.

Finding the initial and final ellipsoids is not so simple, but it can be done.

We may lose the factor of E in solving the SDP because the optimal solution may be irrational
(unlike in LP, where there was nice form of the solution in terms of ratios of small integers); we have
to give up before we actually reach optimality.

References

[I] U. Feige and G. Schechtman. On the optimality of the random hyperplane rounding technique
for MAX CUT. Technical report, Weizmann Institute, Rehovot, Israel, 2000.

[2] M. X. Goemans and D. P. Williamson. Improved Approximation Algorithms for Maximum
Cut and Satisfiability Problems Using Semidefinite Programming. J. Assoc. Comput. Mach.,
42:1115-1145,1995.

[3] J. HBstad. Some optimal inapproximability results. In Proc. 29th ACM Symp. on Theory of
Computing, 1997.

[4] S. Mahajan and H. Ramesh. Derandomizing semidefinite programming based approximation
algorithms. In IEEE Symposium on Foundations of Computer Science, pages 162-169, 1995.

