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Lecture 17 
Lecturer: Michel X.  Goernans Scribe: Steven Richman, Matt Peters 

1 Refresher of Last Lecture 

We continue our description of approximation algorithms and design. Last lecture we were looking 
at the problem of Vertex Cover. 

Vertex Cover (VC): 
Given undirected graph G = (V,E) and nonegative weights on each vertex w(u) 2 0 Vv E V, 

find a vertex cover Sof minimum total weight EVESw (v). A vertex cover satisfies V(u, v) E E{u, u} n 
S f 0 .  

Last time, we introduced the two-step lower bound technique to  analyze approximation algo- 
rithms. This technique can be generalized to apply to maximization problems, but in this lecture 
we will restrict our discussion to minimization problems. The first step in the technique is to find a 
lower bound LB on the optimum solution, and the second step is to show that the analyzed algorithm 
returns a solution at most a x LB. 

We will use the lower bound technique to analyze our algorithm for Vertex Cover. For this, we 
will first formulate the vertex cover problem as an integer program (a linear program with integrality 
constraints). Then we will remove the integrality constraints to obtain a linear program; this is our 
linear programming relaxation. Since, for this linear program, we are optimizing over a set P' that 
contains the set P of all integer solutions to our integer program, we obtain a lower bound LB on 
the optimum vertex cover value. 

For Vertex Cover, we can describe the optimal solution as 

min Cw (v)x(v) 

Using linear relaxation, we get a lower bound: 

min C w (u) x(u) 

We can find a solution to Vertex Cover at most twice this lower bound using the rounding 
algorithm of Hochbaum (around 1981). This algorithm proceeds by first obtaining the solution 
x* (v) of the linear program described in (2). A 2-approximation solution to Vertex Cover is then 
given by 

(Proof that this is a 2-approximation solution was given in the last lecture.) 



We now have an algorithm, shown using the lower bound technique to satisfy 
(i) LB 5 OPT 
(ii) ~ v , s w ( v )  5 2LB 1 20PT 

The drawback of this algorithm is that it requires solving a linear program. Though it is polyno- 
mial time, it may still be more costly than desired. We will start the new material in this lecture by 
giving an alternate approach using duality, and again analyze it using the lower bound technique. 

2 Bar- Yehuda and Even Vertex Cover 

2.1 Duality 

We take the dual program of the linear program described in (2): 

LB is equal to the solution of this program by duality. For any y feasible in the dual LP, we have 

-< LB 5 OPT, 

and we need only find such a y to have a lower bound on OPT. 

2.2 2-Approximation Algorithm (Bar-Yehuda and Even) 

Algorithm Start with an empty S and with y initialized to 0. Find an edge (u,v) that is not 
covered, and increase y(u, v) until one of 

becomes tight. (Since we are increasing y, it will remain nonegative and thus will be feasible.) Add 
the vertex for which the equation becomes tight to S, and proceed, stopping when S is a vertex 
cover. 

y(u,v) t 0 V(u,v) E E 
s t 0  
while S leaves an edge (u, v) not covered do { 


increase y (u, v) 

until 3z E {u, v} :xe,x)EEy(z,I) = w(z) 

st su { x }  




Proof of Correctness: 
(i) At each step, an uncovered edge is found and covered. Thus the algorithm terminates in O(m) 
steps. 
(ii) S is a vertex cover, since the algorithm does not terminate until this is true. 
(iii) y is feasible in the dual LP given in (4), since we start with a feasible y = 0 and at each step 
increase y(u, v) only to the limit of feasibility. 
(iv) When adding z to S in the algorithm, the satisfied equality gives us Ce,,,E E  y(z,x) = w (z). 
This value is never altered by the algorithm afterwards, since the algorithm only alters y(u, v) for 
u @ S and v @ S. Therefore on termination we have 

Using this statement, we can reexpress the weight of S as 

(8) is true because each edge can be counted at most twice (once for v = a in the outer sum and 
once for v = b). (9) was shown to be true in (5). 

The above algorithm is often referred to as a primal-dual algorithm since it constructs both a 
(primal) integer solution and a dual solution for the linear programming relaxation. We will now 
consider a more complicated example based on this primal-dual paradigm. 

3 Generalized Steiner Tree Problem 

Note: Our appromixation solution of the generalized Steiner tree problem will basically be identical 
to the treatment of the matching problem in the approximation notes, with "generalized Steiner tree 
problem" substituted for "matching" (and a few other small differences). 

3.1 Problem Formulation 

The generalized Steiner tree problem (GSTP) is: Given a graph with edge costs and a set of pairs 
of vertices in the graph that you wish to connect, find a minimum cost subgraph where all pairs in 
the set are connected. Formally: Given a graph G = (V,E),costs c(e) > 0 Ve E E, and vertex pairs 
T & V x V, find a subgraph F of minimum cost such that V(s, t) E T :s and t are connected in F. 

GSTP is NP-hard. The best known solution is a 2-approximation algorithm. There are two 
major variations of GSTP 2-approximation: one is due to Goemans and Williamson, the other to 
Jain. This lecture will focus mostly on the algorithm of Goemans and Williamson. 

First, let's formulate GSTP as an integer program: 

where our objective function is: 
Min C c(e)x(e) 

e E E  



We can express connectivity for a vertex pair (s, t) E T as follows: Given any s - t cut S, one of 
the edges in the coboundary (i.e., one of the edges that crosses the cut) must be in F .  

So if we define the set of all such cuts as F: 

F = {S: IS n{s,t)l = 1for some (s, t) E T )  

then we can express the connectivity constraint with one inequality for each set in F, and our GSTP 
integer program becomes: 

Min x c(e)x (e) 
e E E  

It should be clear that this is a correct formulation of GSTP. If this program yields an infeasible 
solution for GSTP, then there will be some unsatisfied pair (s , t )  E T that is not connected. But 
this means there is some s - t cut for which no coboundary edge is present in F ,  which contradicts 

(10). 
This integer program solves GSTP, so it is NP-hard. We can make it solvable in polynomial 

time, however, by applying linear relaxation. 

3.2 Linear Relaxation 

Relax the integrality constraint to obtain: 

LB = M i n x  c(e)x(e) 5 OPT 
e E E  

3.2.1 Solution with the Ellipoid Algorithm 

The relaxed program seems to still be hard to solve, because there are exponentially many inequal- 
ities. However, recall that we can use the ellipsoid algorithm to solve programs with large numbers 
of inequalities if we can find an efficient way to do separation, i.e., if we can determine in polynomial 
time a violated inequality for a point, if one exists. 

An efficient separation algorithm for GSTP works by computing the maximum flow between 
pairs: our god is to identify violated cuts with value less than one, and we know that maximum 
flow is the dual problem of minimum cut. Begin by setting x as the capacity on every edge. Then, 
for every pair of vertices (s, t) E T ,  compute the max flow between s and t. If the max flow is at 
least one, then the pair is satisfied. Otherwise, the flow gives a min cut S E F that is not satisified. 

So, the relaxed program can be solved in polynomial time with the ellipsoid algorithm. Jain's 
algorithm repeatedly solves the linear programming relaxtion to optimality. We will devote the 
remainder of our discussion to a different approximation algorithm (due to Goemans and Williamson) 
that is primal-dual and constructs simultaneously a good integer solution and a dual solution to the 
relaxed program. 



Note that our program's constraints are formulated in terms of cuts, but alternatively we could 
have written our program in terms of flows. This alternative program would have a polynomial 
number of variables and constraints. 

3.2.2 Solution with Duality 

The dual of the relaxed program is: 

Max C Ys 
S E T  

That is, for any edge e, for every set S that e crosses, the sum of the weights placed on e by the 
ys's such that e is in the coboundary of S cannot exceed e's cost. 

We don't need to solve for the optimum of the dual: any feasible solution y is a lower bound on 
OPT. The algorithm we will present constructs: 

1. Y 2 0 :CsEr:eEs(s)Ys 5 c(e) 

2. a feasible set of edges F 

such that: 

SET 

The first inequality will hold because of how our algorithm constructs F and y. The second inequality 
holds because of strong duality. We'll construct y and F simultaneously, but initially with more 
emphasis placed on y. 

Algorithm Start with an empty F and with y intialized to zero. Consider the connected compo- 
nent s defined by F (initially, the only connected components will be the individual vertices) that are 
in F (i.e., the components that cut one or more vertex pairs). Increase y for edges adjacent to these 
connected components as much as possible without violating any y, 5 c(e) constraints. Add the 
edge that becomes tight to F, and proceed, stopping when there are no more connected components 
in F. 

y s t O  V S E F  
Ft0 

i t 1  

connected components C = {{v} :v E V} 
while C flF# 0 do { 

increase ys V S  E (C f l  F) 
u n t i l  a new edge e satisfies c(e) = Cstr:eta(s)ys 

ei t e 

F t F U {ei) 

iti+l 

update connected components C 

The y computed by this algorithm is exactly the y that we seek to construct. F, however, is 
not quite what we need: it has too many edges. Therefore, we perform another step that considers 
the edges in F in the reverse order of how F was constructed. If an edge can be removed from F 
without violating pair connectivity, it is removed. 



for k t  i - 1down t o  1 
i f  F \ {ek) is feasible then 

F +F \ {ek) 

Proof of Correctness It is clear that y is feasible because of how it is constructed: y is initially 
feasible, and when we increase some ys by E ,  we stop if a cost constraint becomes tight. 

In order to show that F is feasible, we need a lemma. 

Lemma 1 Let C be the connected components of F. If C nF = 0, then F is  feasible. 

Proof of Lemma 1: Assume not. Then ZIC, F s.t. CnF = 0 and F is not feasible. Since F is not 
feasible, 3(s, t )  E T s.t. s, t not connected. Let Cs # Ct be connected components of F containing 
s and t ,  respectively. Cs is a set that forms an s - t cut (since s is in Cs and t is not), and, likewise, 
Ct is a set that forms a t - s cut. So Cs,Ct E F +C nF # 0. Contradiction. 

The build step of the algorithm terminates with the condition that C nF = 0, so we know from 
Lemma 1that F is feasible at this point. The edge removal step of the algorithm only removes an 
edge from F if doing so maintains the feasibility of F .  So F must be feasible when the algorithm 
terminates. 

All that remains to be shown is that the cost of the solution is not much more than the cost of 
the dual solution. If we call the F that we compute after the initial build step F and the F after 
excess edges have been removed F', then this can be expressed as: 

We can remove costs from the inequality as follows: 

(12) holds because each edge e E F' satsifies c(e) = CstF:etd(s)ys when it is first added to F ,  and 
we never change the value of ys for a set S : e E S(S) later in the execution of the algorithm. To 
see why the value of ys never subsequently changes, observe that the inclusion of e in F' creates a 
new connected component with e in its interior, and this component will now no longer be equal to 
any cut S for which e is a coboundary edge. (13) holds because in (12) we count each ys for every 
edge that belongs to both F' and 6(S). 

In the next lecture we will show that the coefficients of the ys's, considered under some sort of 
averaging, are less than two. This will prove (11)and complete our correctness proof of the GSTP 
algorithm. 


