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1 Properties of Barrier Problem

Last lecture, we used the strict convexity of the logarithmic barrier function to show that BP(u)
has at most one solution. Now we will prove that a solution exists. We assume throughout and
without loss of generality that the rank of A =m where A is m x n.

Theorem 1 Assume that 3 & > 0: Az = b (i.e. BP(u) is feasible), and 35 > 0,3y : ATj+5=c.
Then BP (p) is finite and has a unique solution.

Proof of Theorem 1:
Take any x > 0 such that Az = b. We have:
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implying that the objective function is lower bounded by a constant (this follows from the fact that
for p >0, §; -z + pInx tends to +o00 as x goes to 0 or to +00). Therefore the infimum of BP(p) is
finite for every p > 0. To show that the infimum is attained (that there exists an optimum solution),
it is sufficient to notice that the argument above also leads to upper and lower bounds on x; in order
to have a value below the one for #, which means that we can restrict our attention to a compact
set; this implies that the infimum is attained. Finally, we have shown last time that if an optimum
solution exists then it is unique. O
For any g > 0, the unique solution to BP(u) is called the pu-center.

2 Karush, Kuhn, and Tucker (KKT) Conditions

Remember the optimality conditions from last lecture. The solution x is optimum for BP(p) if 3 y
such that

Az = b
& > 0
c—pXle = AT‘y,
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where

z; 0 --- 0
¥ = 0 x4 :
: . 0
0o - 0 z,

By setting s to be uX e, these conditions can be re-written as 3 y, s such that

Az = b, z>0, (1)
ATy+s = =z, s>0, (2)
-8 = H, v j‘ (3)

2.1 Definition of Algorithm

To find the p-center, we need to solve (1)-(3). However, the constraints (3) are quadratic, making
this hard to solve'. Instead, in order to find (or approximate) the p-center, we use an iterative
method based on Netwon’s method. We assume we have a solution that satisfies (1) and (2), but
not necessarily (3). We will then linearize equations (3) around our values of z and s, and solve the
corresponding linear system. This gives us new values for x and s and we proceed. We will show
that if we start “close enough” from the p-center then after this update step we will be even closer,
and this iterative process will converge to the p-center of BP(u).

2.2 Update Derivation
Replacing @, y and s with

r +— r+ Az
y « y+Ay
s + s+ As

and ignoring Az - As in (3), we arrive at

AAz = 0, (4)
ATAy+As = 0, (5)
zj-8j+Azxj-s;+2;-As; = p. (6)
We claim this system has the unique solution,
Ay = (AXS'AT)"Y(b— pAS—e)) (7)
As = —ATAy (8)
Az = pSle—z—-XS1As, (9)
where
s 0 - 0
- 0 S9
2 o B
0 -« 0 s,

Lif such a system was easy to solve then this would give a simple algorithm for linear programming by setting p to
0 and replacing the strict inequalities by inequalities.
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Indeed, (6) implies that Az; + z;s7 ' Asj = psj ' — ;, or in vector notation,
Az + XS 'As = puS'le—=. (10)
Premultiplying by A, using (4) and the fact that Az = b, we get
AXS 1As = pASte.

Observe that this is not a square system of equations (but we have m equations in n unknowns).
Substituting As by —AT Ay (because of (5)), we get

—(AXS'AT)Ay = pAS'e —b.

But AXS 'A7 is an m x m matrix of rank m since A has rank m and X and S—! are diagonal
matrices with positive diagonal elements. Thus AX.S~' A7 is invertible and we derive (7). (5) then
immediately implies (8), and (10) implies (9).

At each step, then, replace x and s with the values  + Az and s + As (y can always be derived
from z and s). We will show that this iteration will converge to the p-center of BP(p).

3 Definitions and Properties

3.1 Proximity Measure

Let o(z,s, ) = ||v|| be the proximity measure where v; = 5’#—85- — 1. Note that this will be zero at
the p-center. We will show that [|v]| decreases with each iteration.

3.2 ds and dx

As (z,s,p) = (z + Az, s + As, p), our proximity vector v becomes w where:

T8 _ (z; + Az;)(s; + As;y)

v —1 = ay —1
" : n
_ p+Az;-As; 1
1
- % which we are hoping will be small.

For the analysis, it will be useful to rescale the z-space and the s-space so that the the current
iterates x and s are equal, but in a way that z;s; remains constant. For this, we will rescale
component j of any vector in the z-space by ,/5’1} and component j of any vector in the s space

Az | [85

7 = and

by ‘!f—;‘:. Rescaling Az and As, we express w; as w; = dxj - ds; where dz; = (
_ | Asy i

ds; = (S [3)

3.3 Properties

Property 1 Azl As.

Proof of Property 1: This is true because Az is in the nullspace of A while As is in the
columnspace of AT, Indeed, premultiplying (5) by AzT and using (4), we get that Az”As =0. O

Observe that although z + Az and s + As do not necessarily satisfy (and will not) that (z; +
Az;j)(s; + As;j) = p, on average they do since the duality gap (z + Az)T(s + As) = Zj(:cjsj o
Axzjsj+ x;As; + Az;Asj) = np by the above property and (6).
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Property 2 drLlds.

Proof of Property 2: dz'ds = 2 jdzj-ds; = ﬁzj Azj - As; = 0, using the definition of dz;,
ds; and Property 1. O

d.’.i‘.?j +d$j = “ == 5% = —vj ﬂ- -
24+ 8j 7 258

Az; -85 + As; - T
v Iy 8
B—Tj-8;
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Property 3

Proof of Property 3:

d:I.‘j + de

Il

4 Theorems 2 and 3
Theorem 2 If o(x,s,1) <1, then x + Az > 0 and s + As > 0.
Theorem 3 Ifo(z,s,pu) < o <1, then o(x + Az, s+ As, pu) < ﬂ?—:ﬁ

These two theorems guarantee that, provided o(z, s, u) is sufficiently small, repeated updates
z + Az, s+ As given in the algorithm will converge to the p-center. Theorem 2 was not proved in
this lecture. The proof for theorem 3 is provided below. Theorem 3 shows that the convergence is
quadratic (provided we are close enough).
Proof of Theorem 3: We have that o*(z + Az, s + As,pu) = ||w|* = 3w} = 3, da7 - ds3.
Using the fact that 4-a-b < (a+ b)? and Property 2,

; 1 ;
o*(x+ Az,s+ As,u) < ZZ (da? -I-a?sf-)2
J

o 2

> (da} + ds3) + 2dx; - ds;
|
- 2

1
;- > (dx; + ds;)?
J
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Using property 3,

1 ’ L
2 2
o’ (x + Az, s + As, ) 51 Z”J"x,--sj
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Taking the square root, we get

oz + Az, s+ As, u)

IA

1 - Iz
52%-3..5.
i g J

< 3(Z) (max ) (11)
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i J J

Now, consider these two terms. The first, j v?, is equal to ¢® by definition. The second,
max; jt/(z; - 8;), is at most 1/(1 — o) by the following argument:

vl <o = |vjl<o, Vj

o _1{<

3 1-0<H %140
7
1

= LI . Y

]
Zj- 8 1—0o

since 1 — ¢ is strictly positive under the conditions of the theorem. Using these upper bounds in
(11), we can conclude the proof by stating,

o2

A A ]
oz +Az,s+As,u) < 5 1—0)

Corollary 4 Ifo < %, then ‘Hi;:ﬁ L %

This corollary gives us a necessary initial bound on ¢ to guarantee convergence.

5 Theorem 5

Theorems 2 and 3 show that the updates Az, As given in the algorithm will converge to the p-center.
However, instead of making the Newton updates to converge to the p-center for a fixed value of p,
we take one step to get closer to the u-center (¢ becomes now ¢2/(2(1 — ¢))) and then decrease u
(since our goal is let p tend to 0) in such a way that our new iterate is within the original value of
o but with respect to the updated pu. Theorem 5 shows how the proximity measure changes as we
change p.

Theorem 5 Suppose z7s =np and o = o(z, s, p), then o(z,s,u(1 —0)) = 5V02 + 6% - n.

Observe that our new iterate z+ Az and s+As satisfy the condition that (z+Az)7 (s+As) = nu,
and hence Theorem 5 can be applied to see how the proximity measure changes when we modify g
after a Newton iterate.

Proof of Theorem 5:  Let v' be the vector v after having changed p, i.e. vj = ;=5 — 1. We
have that
] Lj-S8j
BT (-9
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Thus v' = m’b‘"f*me.

Our assumption that s = npu can be translated into v7e = 0 since v’e = 2iVi=2; (E-L—s’— - 1) =

% — n. Therefore, we get that
2 2

, 1 , 0 1 9
Jo'[|* = a—er lloll* + Ao llell* = a—oe l[v]|* + a—oe™

Taking square roots, we get the desired result. O
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