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1 Properties of Barrier Problem 

Last lecture, we used the strict convexity of the logarithmic barrier function to show that BP(p)  
has at most one solution. Now we will prove that a solution exists. We assume throughout and 
without loss of generality that the rank of A = m where A is rn x n. 

Theorem 1 Assume that 3 2 > 0 :Ax = b (2.e. BP(p)  is  feasible), and 3 S > 0, 3 y :ATjj+S = C .  

Then BP(p)  is finite and has a unique solution. 

Proof  of Theorem 1: 
Take any x > 0 such that Ax = b. We have: 

= ( s ^ T + j j T ~ ) ~ - p C l n ~ i  
j 

= S T x + e T ~ x- p C l n x j  
j 

= jjTb + C ( i j  x j  - p ln xj), (this sum cannot be arbitrarily negative) 
j 

implying that the objective function is lower bounded by a constant (this follows from the fact that 
for p > 0, S j  x +p l n x  tends to +oo as x goes to 0 or to +m).  Therefore the infimum of BP(p)  is 
finite for every p > 0. To show that the infimum is attained (that there exists an optimum solution), 
it is sufficient to notice that the argument above also leads to upper and lower bounds on x j  in order 
to have a value below the one for 2 ,  which means that we can restrict our attention to a compact 
set; this implies that the infimum is attained. Finally, we have shown last time that if an optimum 
solution exists then it is unique. 

For any p > 0, the unique solution to BP(p)  is called the p-center. 

2 Karush, Kuhn, and Tucker (KKT) Conditions 

Remember the optimality conditions from last lecture. The solution x is optimum for BP(p)  if 3 y 
such that 



where 

By setting s to be pXV1e, these conditions can be re-written as 3 y, s such that 

2.1 Definition of Algorithm 

To find the p-center, we need to solve (1)-(3). However, the constraints (3) are quadratic, making 
this hard to solve1. Instead, in order to find (or approximate) the p-center, we use an iterative 
method based on Netwon's method. We assume we have a solution that satisfies (1) and (2), but 
not necessarily (3). We will then linearize equations (3) around our values of x and s ,  and solve the 
corresponding linear system. This gives us new values for x and s and we proceed. We will show 
that if we start "close enough" from the p-center then after this update step we will be even closer, 
and this iterative process will converge to the p-center of BP(p) .  

2.2 Update Derivation 

Replacing x, y and s with 

and ignoring Ax . As in (3), we arrive at  

AAx = 0, 

A ~ A Y + A S= 0, 
x j  .sj + Axj - sj +x j  .Asj = /L. 

We claim this system has the unique solution, 

where 

lif such a system was easy to solve then this would give a simple algorithm for linear programming by setting p to 
0 and replacing the strict inequalities by inequalities. 



Indeed, (6) implies that Axj +xjs j lAsj  = psj '  - x j,or in vector notation, 

Premultiplying by A, using (4) and the fact that Arr: = b, we get 

Observe that this is not a square system of equations (but we have m equations in n unknowns). 
Substituting As by -ATAy (because of (5)), we get 

But AXS-'AT is an m x m matrix of rank m since A has rank m and X and S-' are diagonal 
matrices with positive diagonal elements. Thus AXS-'AT is invertible and we derive (7). (5) then 
immediately implies (8), and (10) implies (9). 

At each step, then, replace x and s with the values x +Ax and s +As (y can always be derived 
from x and s). We will show that this iteration will converge to the p-center of BP(p).  

3 Definitions and Properties 

3.1 Proximity Measure 

Let o(x, s,p) = 1 lv 1 1  be the proximity measure where vj = - 1. Note that this will be zero at 
the p-center. We will show that llvll decreases with each iteration. 

3.2 ds and dx 

As (x,S,p) + (x +Ax, s + As, p), our proximity vector v becomes w where: 

p +Axj - Asj 
- - 1 

lu 

-- Axj - Asj which we are hoping will be small. 
P 

For the analysis, it will be useful to rescale the x-space and the s-space so that the the current 
iterates x and s are equal, but in a way that x js j  remains constant. For this, we will rescale 

component j of any vector in the x-space by and component j of any vector in the s space 

by f i.Rescaling Ax and As, we express wj as wj = dxj . dsj where dxj = (3. c)and 

3.3 Properties 

Property 1 A x l A s .  

Proof of Property 1: This is true because Ax is in the nullspace of A while As is in the 
columnspace of AT. Indeed, premultiplying (5) by AxT and using (4), we get that AxTAs = 0. 

Observe that although x + Ax and s +As do not necessarily satisfy (and will not) that (xj + 
Axj) (sj  + Asj) = p, on average they do since the duality gap (x + AX)^ (s + As) = Cj(xjs j  + 
Axjsj +xjAsj + AxjAsj) = n p  by the above property and (6). 



Property 2 dxlds .  


Proof of Property 2: dxTds = Cjdxj - ds . - 'CjAxj . Asj = 0, using the definition of dxj,

3 - P  

dsj and Property 1. 

Property 3 

Proof of Property 3: 

4 Theorems 2 and 3 

Theorem 2 If a(x, s ,p) < 1, then x + Ax > 0 and s + As > 0. 

Theorem 3 If a(x,s,p) < a < 1, then o(x + AX,s + As, p) < -. 
These two theorems guarantee that, provided a(x,s,p) is sufficiently small, repeated updates 

x + Ax, s + As given in the algorithm will converge to the p-center. Theorem 2 was not proved in 
this lecture. The proof for theorem 3 is provided below. Theorem 3 shows that the convergence is 
quadratic (provided we are close enough). 
Proof of Theorem 3: We have that o2(x + Ax, s + As, p) = 1 lw1I2 = CjW: = Cjdx: . ds:. 
Using the fact that 4 a . b < (a + b)2 and Property 2, 

Using property 3, 



5 

Taking the square root, we get 

Now, consider these two terms. The first, x.vz, is equal to a2 by definition. The second, 
? 3

maxj p /  (xj .sj),  is at most 1/(1- a )  by the following argument: 

since 1- a is strictly positive under the conditions of the theorem. Using these upper bounds in 
( l l ) ,  we can conclude the proof by stating, 

a (x  + Ax, s +As, p) 5 
a2 

2 - (1 -0 ) '  

Corollary 4 I f a  < $, then -< a < $. 

This corollary gives us a necessary initial bound on a to guarantee convergence. 

Theorem 5 

Theorems 2 and 3 show that the updates Ax, As given in the algorithm will converge to the p-center. 
However, instead of making the Newton updates to converge to the p-center for a fixed value of p,  
we take one step to get closer to the p-center ( a  becomes now a2/(2(1 - a)))  and then decrease p 
(since our goal is let p. tend to 0) in such a way that our new iterate is within the original value of 
a but with respect to the updated p. Theorem 5 shows how the proximity measure changes as we 
change p. 

Theorem 5 Suppose xTs = n p  and a = a(x,s,p), then o(x, s ,  p(1- 8)) = &do2 + O2 .n. 

Observe that our new iterate $+Ax and s+ As satisfy the condition that ( x + A x ) ~  (sf As) = np, 
and hence Theorem 5 can be applied to see how the proximity measure changes when we modify p 
after a Newton iterate. 
Proof of Theorem 5: Let v' be the vector v after having changed p, i.e. v(i = a- 1. We 
have that 



-- 

6Thus u' = &v + m e .  

Our assumption that zTs = np can be translated into uTe = 0 since uTe = C .u.= C j(y 1)3 3 - = 

zTs n. Therefore, we get that 
P 

Taking square roots, we get the desired result. 


