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1 Issues with the Ellipsoid Algorithm 

As shown in the last lecture, the update formulae contain a square root in b = L A k c .  ThisJG 
is problematic as we do not have infinite bits to represent the result of the square root. Without 
going into detail, this can be solved by rounding to a new center, taking a slightly bigger ellipsoid, 
and showing that the new ellipsoid is still small enough to satisfy the required ratio of volumes 
inequality. Another issue is that at each iteration of the algorithm, the number of bits we need to 
represent our ellipsoid may grow too fast. Again, this may be handled by rounding and perturbing, 
the details of which we shall forego. 

2 Optimization and Separation 

So far, we have seen three kinds of linear programming algorithms: 

1. Simplex - not known to be polynomial, but works well in practice. 

2. Ellipsoid - polynomial, but works poorly in practice as the ratio of volumes bound is very close 
to a lower bound as well. 

3. Interior Point - polynomial, works well in practice. 

The Ellipsoid algorithm does have a redeeming quality in that it only requires us to solve a separation 
problem: given x, either claim that x E P or output an inequality cTy5 d such that cTr > d (i.e., x 
does not satisfy this inequality) and P {x :cTx 5 d )  (i.e., P satisfies the inequality). Therefore, 
we do not need to list all of the inequalities of the linear program in order to be able to use the 
ellipsoid method to solve it. This is an important feature of the ellipsoid algorithm, and enables us 
to solve some exponential size linear programs. 

In summary, the Ellipsoid algorithm requires three things: 

1. P bounded, P [-24, 2QIn 

2. If P is non-empty, then x + [-2-Q, 2-QIn & P', where is x is a solution of the original (non- 
inflated) problem, and P' is the inflated polyhedron. 

3. Polynomial time algorithm for the separation problem. 

Given these, we can find in O(n2Q)calls to the separation algorithm a point in P' or claim that P 
is empty. 
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Here is a simple example of the use of such a separation algorithm. Suppose we would like to 
optimize over the following linear program (where n is even): 

where 

> 1for all S C1 1 , - - - , n )  with IS1 = n / 2 , x j  >Ofor a l l j  

There are (" 1 2  " ) constraints and this is exponential in n. If we are given this linear program implicitly 
(saying every subset of size n/2 should sum to at least I ) ,  the size of the input would be of the order 
of sixe(c) (which is > n), and thus we can't afford to write down explicitly the linear program and 
then use a polynomial-time algorithm for linear programming (polynomial in the size of the explicit 
linear program, and not just sixe(c)). 

However, we can use the ellipsoid algorithm to find a point in say P n {x : cTx 5 A). Indeed to 
check whether a point (the center of an ellipsoid) is in P, we do not need to explicitly check every 
inequality. We can simply sort the xi's, take the n/2 smallest, and verify whether they sum to at 
least 1. If they do, every inequality in the description of P is satisfied, otherwise we take as S the 
indices of the n/2 smallest values of x and use the inequality over S .  This requires only O(n1ogn) 
time (we do not even need to use sorting, we can simply use a linear-time algorithm for selecting 
the n/2-th element; this would take O(n) time). 

To decide which ellipsoid to start with, we can use the fact that we can assume x j  5 1 (if one of 
the cj's is negative the problem is unbounded and thus there exists an x of cost below the value 
A; otherwise any value greater than 1 can be reduced to 1 without increasing the cost or losing 
feasibility). To transform P into P' to  guarantee the existence of a small ball within it, we can 
consider vertices of Pn{x : cTx 5 A). Using Crarner's rule as usual, we can express any such vertex 
as (F,7 ,- . - ,F)where the pi's and q are bounded by 2Q where Q = O(n log n + c,,,). (Indeed, 
the matrices involved in the calculations will be square matrices of dimensions at most n x n and all 
entries will be 0 or 1except in one of the rows in which they will be cj's, so such determinants will be 
bounded by (fi)"nc,,,.) Thus instead of P ,  we consider P' in which the inequalities Cjtsx j  > 1 
are replaced by CjEsxj  2 1- &, and instead of intersecting it with the inequality cTx 5 A, we 
intersect it with cTx 5 X +*.Now, we can use the ellipsoid algorithm to decide if there is a point 
in P' n{x : cTx 5 X + & using O(n2Q) = O(n3 log n + ncmaX) iterations (each involving a rank-1 
update and a call to the separation routine). 

A simple O(n1ogn) time algorithm to solve this linear program is left as an exercise (the solution 
given in lecture was incorrect). 

Interior Point algorithms 

Karmarkar '84 gave an interior point algorithm, which stays inside the polytope and converges to 
an optimal point on the boundary. It  considers the problem: 

min cTx 

s.t. A x = b , x > O .  

Note that the inequality is strict. To enforce this, we add a logarithmic barrier function to  the 
objective function: 



Figure 1:A strictly convex function 

Note that this approaches ca as xj + 0. Effectively, this enforces a > 0 by imposing an infinite 
penalty whenever an x component is 0. 

Definition 1 A function f i s  said to be s tdc t ly  convex i f  its domain i s  convex and for every 
x(') # in the domain o f f ,  and every 0 < A < 1, 

f (Ax'" + (1-A ) x ( ~ ) )< Af (J1))+ (1-A)f ( x ( ~ ) ) .  

Figure 1illustrates a strictly convex function. 

Lemma 1 cTx -p xjln(x j ) ,p > 0 is strictly convex over x > 0.  

Proof of lemma 1: This is more or less clear from the graph of the logarithmic barrier function. 

Lemma 2 If the barrier problem BP(p)  is feasible and its value finite then there exists a unique 
solution to it: Minimize cTz -p C jln(a ),p > 0 s.t. Az = b,x > 0 

Proof of lemma 2: Assume 3d1)# d2) ,f (dl)) = f (d2))= BP(p) .Then 

Ax(') + (1- x ) x ( ~ ) ,0 < x < 1 

is feasible since {x : Ax = b, x > 0) is convex, and 

f (Ax(')+ (1- < xf ( x ( l ) )+ (1- A)f ( x ( ~ ) )= BP(p) ,  

which is in contradiction with the minimality of BP(p) .  Therefore, the solution is unique. 



3.1 Optimality Condition 

Lemma 3 For any p > 0, x is optimum for BP(p),  if and only if, 33, s, such that 

Proof of lemma 3: Let f (x) = cTx +p xjln(xj). 

By Lemma 1,f (x) is strictly convex, thus a local minimum is also global minimum. By Lemma 2, 
such minimum is unique. 

Under the constraint Ax = b,  x is optimum for f (x), if and only if, Vf (x) is orthogonal to the 
constraint space {x : Ax = 0). Since the column space of AT is orthogonal to the null-space of 
A, Vf (x) must be in the column space of AT. Thus, x is optimum, if and only if, 3y, such that 
Vf (x) = ATy. 

Since 

we obtain that, x is optimum, if and only if, 3y, such that, c - p ~ - ' e  = ATy, where 

and e is the n-dimensional column vector with each entry equal to 1. 

Let s j  = p/xj, we conclude out proof. 

Equations 1, 2, and 3 are called Karush-Kuhn-Tucker optimality conditions. 

Note that, since x > 0 and p > 0, we must have s > 0. Equation 2 represents the condition of the 
dual problem of our original problem. The duality gap is 

cTx - bTY = xTs = C x j ~ j= pn. 
j 

As p + 0, the duality gap tends to 0, and thus cTx and bTy tend to the optimal value of (P )  and 
(D). 

For a given p,  it is not easy to solve the equations 1,2, and 3, since equation 3 is not linear. Instead, 
we will use an iterative method to find the solutions. We start at some pg. For each step i, we will 
go from pi to some pi+l < pi. We show that if we are close enough to pi before the step, then after 
the step, we will be close enough to pi+l- 

The iterative step is as follows. Suppose we are at (x, y ,s), where 



We replace x by x + Ax, y by y +Ay , and s by s + As. We get 

A ( x + A x ) = b  AAx=O 

A ~ ( ~ + A ~ ) + ( S + A S ) = C  A ~ A ~ + A S = O  

+ Axjsj + Asjxj = p -X j S j  , Vj .(xj +Axj)(sj + Asj) = p 
linearize 

The equations we obtained above are all linear, and can be solved in polynomial time. Then we will 
move to the next step with the new x, y, s. We will show that with properly chosen pi, x converges 
to the optimal solution in polynomial time. 


