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9 Linear Programming 

Linear programming is the class of optimization problems consisting of optimizing the value of a 
linear objective function, subject to linear equality or inequality constraints. These constraints are 
of the form 

a1x1 + · · · + anxn {≤, =, ≥} b, 

where ai, b ∈ R, and the goal is to maximize or minimize an objective function of the form 

c1x1 + + cnxn.· · · 

In addition, we constrain the variables xi to be nonnegative. 
The problem can be expressed in matrix form. Given these constraints 

Ax b{≤, =, ≥} 

x 0,≥ 

maximize or minimize the value of 
Tc x, 

where x ∈ Rn , A ∈ Rm×n , b ∈ Rm , c ∈ Rn . 
Linear programming has many applications and can also be used as a proof technique. In 

addition, it is important from a complexity point-of-view, since it is among the hardest of the class 
of polynomial-time solvable problems. 

9.1 Algorithms 

Research in linear programming algorithms has been an active area for over 60 years. In this class, 
we will discuss three major (classes of) algorithms: 

Simplex method (Dantzig 1947). • 

–	 Fast in practice. 

–	 Still the most-used LP algorithm today. 

–	 Can be nonpolynomial (exponential) in the worst case. 

Ellipsoid algorithm (Shor, Khachian 1979). • 

–	 Polynomial time; this was the first polynomial-time algorithm for linear programming. 

–	 Can solve LP (and other more general) problems where the feasible region P = {x : Ax = 
b, x ≥ 0} is not explicitly given, but instead, given a vector x, one can efficiently decide 
whether x ∈ P or if not, find an inequality satisfied by P but not by x. 

–	 Very useful for designing polynomial time algorithms for other problems. 

–	 Not fast in practice. 

9-1 



� 

� 

•	 Interior-point algorithms (Karmarkar 1984). 

–	 This is a class of algorithms which maintain a feasible point in the interior of P ; many 
variants (by many researchers) have been developed. 

–	 Polynomial time. 

–	 Fast in practice. 

–	 Can beat the simplex method for larger problems. 

9.2 Equivalent forms 

A linear programming problem can be modified to fit a preferred alternate form by changing the 
objective function and/or the linear constraints. For example, one can easily transform any linear 
program into teh standard form: min{cT x : Ax = b, x ≥ 0}. One can use the following simple 
transformations. 

Maximize to minimize	 max{cT x} min{−cT x}−→ 
aT


Equality to inequality ai
T x = bi a

i
T 
x ≤ bi
−→ 

i x ≥ bi 

Inequality to nonnegativity constraint ai
T x ≤ bi −→ 

s 
ai

T 

≥ 
x 
0
+ s = bi (s ∈ Rn) ⎧ 

replace xj everywhere by x + − x−⎨	 j j 
+Variables unrestricted in sign xj unrestricted in sign −→ ⎩ 

xj ≥ 0 
x−j ≥ 0 

9.3 Definitions 

Here is some basic terminology for a linear program. 

Definition 1 A vector x is feasible for an LP if it satisfies all the constraints. 

Definition 2 An LP is feasible if there exists a feasible solution x for it. 

Definition 3 An LP is infeasible if there is no feasible solution x for it. 

Definition 4 An LP min{cT x : Ax = b, x ≥ 0} is unbounded if, for all λ ∈ R, ∃x ∈ Rn such that 

Ax = b 

x ≥ 0 

cT x ≤ λ. 

9.4 Farkas’ lemma 

If we have a system of equations Ax = b, from linear algebra, we know that either Ax = b is 
solvable, or the system AT y = 0, bT y = 0 is solvable. � Indeed, since Im(A) = ker(AT )⊥, either b 
is orthogonal to ker(AT ) (in which case it is in the image of A, i.e. Ax = b is solvable) or it is 
not orthogonal to it in which case one can find a vector y ∈ ker(AT ) with a non-zero inner product 
with b (i.e. AT y = 0, bT y = 0 is solvable). �

Farkas’ lemma generalizes this when we have also linear inequalities: 

Lemma 1 ((Farkas’ lemma)) Exactly one of the following holds: 

1.	 ∃x ∈ Rn : Ax = b, x ≥ 0, 
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2. ∃y ∈ Rm : AT y ≥ 0, bT y < 0. 

Clearly, both cannot simultaneously happen, since the existence of such an x and a such a y 
would mean: 

yT Ax = yT (Ax) = y T b < 0, 

while 
yT Ax = (AT y)T x ≥ 0, 

as the inner product of two nonnegative vectors is nonnegative. Together this gives a contradiction. 

9.4.1 Generalizing Farkas’ Lemma 

Before we provide a proof of the (other part of) Farkas’ lemma, we would like to briefly mention 
other possible generalizations of the solvability of system of equations. 

First of all, consider the case in which we would like the variables x to take integer values, 
but don’t care whether they are nonnegative or not. In this case, the natural condition indeed is 
necessary and sufficient. Formally, suppose we take this set of constraints: 

Ax = b 

x Zn∈ 

Then if yT Ax = yT b, and we can find some yT A ∈ Zn and some yT b that is not integral, then the 
system of constraints is infeasible. The converse is also true. 

Theorem 2 Exactly one of the following holds: 

1. ∃x ∈ Zn : Ax = b, 

2. ∃y ∈ Rm : AT y ∈ Zn and bT y ∈/ Z. 

One could try to combine both nonnegativity constraints and integral restrictions but in that case, 
the necessary condition for feasibility is not sufficient. In fact, for the following set of constraints: 

Ax = b 

x 0≥ 

x Zn ,∈ 

determining feasibility is an NP-hard problem, and therefore we cannot expect a good characteriza­
tion (a necessary and sufficient condition that can be checked efficiently). 

9.4.2 Proof of Farkas’ lemma 

We first examine the projection theorem, which will be used in proving Farkas’ lemma (see Figure 
1). 

Theorem 3 (The projection theorem) If K is a nonempty, closed, convex set in Rm and b ∈/
K, define 

p = projK (b) = arg min (1) 
z∈K 

�z − b�2. 

Then, for all z ∈ K : (z − p)T (b − p) ≤ 0. 
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Figure 1: The projection theorem. 

Proof of Lemma 1: We have seen that both systems cannot be simultaneously solvable. 
So, now assume that �x : Ax = b, x ≥ 0 and we would like to show the existence of y satisfying 

the required conditions. Define 

K = {Ax : x ∈ Rn , x ≥ 0} ⊆ Rm . 

By assumption, b ∈/ K, and we can apply the projection theorem. Define p = projK (b). Since 
p ∈ K, we have that p = Ax for some vector x ≥ 0. Let y = p − b ∈ Rm . We claim that y satisfies 
the right conditions. 

Indeed, consider any point z ∈ K. We know that ∃w ≥ 0 : z = Aw. By the projection theorem, 
we have that (Aw − Ax)T y ≥ 0, i.e. 

(w − x)T AT y ≥ 0, (2) 

for all w ≥ 0. Choosing w = x + ei (where ei is the ith unit vector), we see that AT y ≥ 0. We still 
need to show that bT y < 0. Observe that bT y = (p − y)T y = pT y − yT y < 0 because pT y ≤ 0 
and yT y > 0. The latter follows from y = 0 and the former from (2) with � w = 0: −xT AT y ≥ 0, 
i.e. −pT y ≥ 0. � 

9.4.3 Corollary to Farkas’ lemma 

Farkas’ lemma can also be written in other equivalent forms. 

Corollary 4 Exactly one of the following holds: 

1. ∃x ∈ Rn : Ax ≤ b, 

2. ∃y ∈ Rm : y ≥ 0, AT y = 0, bT y < 0. 

Again, x and y cannot simultaneously exist. This corollary can be either obtained by massaging 
Farkas’ lemma (to put the system of inequalities in the right form), or directly from the projection 
theorem. 

9.5 Duality 

Duality is one of the key concepts in linear programming. Given a solution x to an LP of value z, 
how do we decide whether or not x is in fact an optimum solution? In other words, how can we 
calculate a lower bound on min cT x given that Ax = b, x ≥ 0? 
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Suppose we have y such that AT y ≤ c. Then observe that yT b = yT Ax ≤ cT x for any feasible 
solution x. Thus yT b provides a lower bound on the value of our linear program. This conclusion 
is true for all y satisfying AT y ≤ c, so in order to find the best lower bound, we wish to maximize 
yT b under the constraint of AT y ≤ c. 

We can see that this is in fact itself another LP. This new LP is called the dual linear program 
of the original problem, which is called the primal LP. 

• Primal LP: min cT x, given Ax = b, x ≥ 0, 

• Dual LP: max bT y, given AT y ≤ c. 

9.5.1 Weak Duality 

The argument we have just given shows what is known as weak duality. 

Theorem 5 If the primal P is a minimization linear program with optimum value z, then it has a 
dual D, which is a maximization problem with optimum value w and z ≥ w. 

Notice that this is true even if either the primal or the dual is infeasible or unbounded, provided 
we use the following convention: 

infeasible min. problem −→ value = +∞ 

unbounded min. problem −→ value = −∞ 

infeasible max. problem −→ value = −∞ 

unbounded max. problem −→ value = +∞ 

9.5.2 Strong Duality 

What is remarkable is that one even has strong duality, namely both linear programs have the same 
values provided at least one of them is feasible (it can happen that both the primal and the dual 
are infeasible). 

Theorem 6 If P or D is feasible, then z = w. 

Proof: We assume that P is feasible (the argument if D is feasible is analogous; or one could also 
argue that the dual of the dual is the primal and therefore one can exchange the roles of primal and 
dual). 

If P is unbounded, z = −∞, and by weak duality, w ≤ z. So it must be that w = −∞ and thus 
z = w. 

Otherwise (if P is not unbounded), let x∗ be the optimum solution to P, i.e.: 

z = cT x∗ 

Ax∗ = b 

x∗ 0≥ 

We would like to find a dual feasible solution with the same value as (or no worse than) x∗. That 
is, we are looking for a y satisfying: 

AT y ≤ c 

bT y ≥ z 

If no such y exists, we can use Farkas’ lemma to derive: ∃x ∈ Rn , x ≥ 0, and ∃λ ∈ R, λ ≥ 0 : 
Ax − λb = 0 and cT x − λz < 0. 

We now consider two cases. 

9-5 



• �

� 

If λ = 0, we can scale by λ, and therefore assume that λ = 1. Then we get that 

∃x ∈ Rn : 

⎧⎨ ⎩ 

Ax = b, 
x ≥ 0 
cT x < z. 

This result is a contradiction, because x∗ was the optimum solution, and therefore we should 
not be able to further minimize z. 

If λ = 0 then • 

∃x ∈ Rm : 

⎧⎨ ⎩ 

x ≥ 0 
Ax = 0 
cT x < 0. 

Consider now x∗ + µx for any µ > 0. We have that 

x∗ + µx ≥ 0 

A(x∗ + µx) = Ax∗ + µAx = b + 0 = b. 

Thus, x∗ + µx is feasible for any µ ≥ 0. But, we have that 

cT (x∗ + µx) = cT x∗ + µcT x < z, 

a contradiction. 
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