
MIT OpenCourseWare
http://ocw.mit.edu 

6.854J / 18.415J Advanced Algorithms 
Fall 2008��

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu/terms
http://ocw.mit.edu


1 

18.415/6.854 Advanced Algorithms	 September 29, 2008 

Lecture 7 - Dynamic Trees 
Lecturer: Michel X. Goemans 

Overview 

In this lecture, we discuss dynamic trees, a sophisticated data structure introduced by Sleator and 
Tarjan. Dynamic trees allow to provide the fastest worst-case running times for many network flow 
algorithms. In particular, it will allow us to efficiently perform the Cancel operation in the Cancel 
and Tighten algorithm. Dynamic trees build upon splay trees, which we introduced in the previous 
lecture. 

Dynamic trees manage a set of node-disjoint (not necessarily binary) rooted trees. With each 
node v is associated a cost. In our use of dynamic trees, the cost will be coming from the edge 
(p(v), v), where p(v) denotes the parent of v; the cost of the root in that case will be set arbitrarily 
large (larger than the cost of any other node), say +∞. 

Figure 1: Example of Dynamic Tree. 

Dynamic trees will support the following operations: 

•	 make-tree(v): Creates a tree with a single node v, whose cost is +∞. 

•	 find-root(v): Finds and returns the root of the tree containing the node v. 

•	 find-cost(v): Returns the cost of node v. (This may sound like a trivial operation, but 
in fact there is real work to be done, because we will not explicitly maintain the costs of all 
nodes.) 

•	 find-min(v): Finds and returns the ancestor of w of v with minimum cost. Ties go to the 
node closest to the root. 

•	 add-cost(v, x): Adds x to the cost of all nodes w on the path from find-root(v) to v. 

•	 cut(v): Breaks the rooted tree in two by removing the link to v from its parent. The node v 
is now the root of a new tree, and its cost is set to +∞. 

•	 link(v, w, x): Assumes that (1) w is a root, and (2) v and w are not in the same tree, i.e. 
find-root(v) 6 w. Combines two trees by adding an edge (v, w), i.e. p(w) = v.= Sets the cost 
of w equal to x. 

We will later show that all of these operations run in O(log n) amortized time. 

7 - Dynamic Trees-1 



2 

v 

v 

Figure 2: cut(v) operation. 

LINK 

W 

V 

COST(W) = X 

Figure 3: link(v, w, x) operation. 

Theorem 1 The total running time of any sequence of m dynamic tree operations is O((m + 
n) log n), where n is the number of nodes. 

We defer the proof of this theorem until the next lecture. 

Implementation of Cancel with dynamic trees 

Recall the setting for the Cancel step in the algorithm Cancel and Tighten for the minimum cost 
flow problem. We have a circulation f and node potentials p in an instance defined on graph G. 
Recall that an edge (v, w) is admissible if cp(v, w) < 0, and the admissible graph (V, Ea), is the 
subgraph of Ef (the residual graph corresponding to our circulation) containing only the admissible 
edges. Our aim is to repeatedly find a cycle in the admissible graph and saturate it. Each time we 
do this, all of the saturated edges disappear from the graph. Also recall that no edges are added 
to the admissible graph during this process, because any new edge in the residual graph must have 
positive reduced cost and are therefore is not admissible. 

We represent the problem with dynamic trees, where the nodes in the dynamic trees correspond 
to nodes in G and the edges of the dynamic trees are a subset of the admissible edges. We maintain 
two (disjoint) sets of admissible edges: those which are currently in the dynamic tree, and those 
which still need to be considered. The cost of a node v will correspond to the residual capacity 
uf (p(v), v) of the edge (p(v), v), unless v is a root node, in which case it will have cost +∞. We 
will also mark some of the roots (denoted graphically with a (∗)) to indicate that we dealt with 
them and concluded they can’t be part of any cycle. For the edges not in the dynamic tree, we also 
maintain the flow value. (We don’t need to maintain the flow explicitly for the edges in the trees, 
since we can recover the flow from the edge capacities in G and the residual capacity.) 

To summarize, we begin with a set of n singleton trees. All of the edges start out in the remaining 
pool. In each iteration, we try to find an admissible edge leading to the root r of one of the dynamic 
trees. If we fail to find such an edge, this implies there are no admissible cycles which include r, 

7 - Dynamic Trees-2 



and so we mark it and remove it from consideration. Suppose, on the other hand, that we do find 
an edge (w, r) leading into the root. If w is in a different tree, we join the two trees by adding an 
edge connecting w and r. On the other hand, if w and r are part of the same tree, it means we have 
found a cycle. In this case, we push flow along the cycle and remove the saturated edges from the 
data structure. 

In more detail, we keep repeating the following procedure as long as there still exist unmarked 
roots: 

⊲ Choose an unmarked root r. 
⊲ Among admissible edges, try to find one which leads to r. 
⊲ CASE 1: there is no such (v, r) ∈ Ea. 

⊲ Mark r, since we know it cannot possibly be part of a cycle. 
⊲ Cut all the children v of r. 
⊲ Set 

f(r, v)	 ← u(r, v)− uf (r, v) 

= u(r, v)− find-cost(v) 

⊲ CASE 2: there is an admissible edge (w, r) from a different tree, i.e. find-root(w) =6
r. 

⊲ Link the two trees: link(w, r, u(w, r) − f(w, r)) 
⊲ CASE 3: there is an admissible edge (w, r) from the same tree, i.e. find-root(w) = 

r. 
⊲ We’ve found a cycle, so push flow along the cycle. The amount we can push is 

δ = min(u(w, r) − f(w, r), find-cost(find-min(w))) 

⊲ add-cost(w, −δ)

⊲ Increase f(w, r) by δ

⊲ If f(w, r) = u(w, r), then (u, r) is inadmissible, so we get rid of it.

⊲ While find-cost(find-min(w)) = 0:


⊲ z ← find-min(w)

⊲ f(p(z), z)← u(p(z), z)

⊲ cut(z)


The last while loop is to delete all the edges that became inadmissible along the path from r to w. 

2.1 Running time 

In a cancel step, we end up cancelling at most O(m) cycles, where m is the number of edges. In 
addition, each edge gets saturated at most once (if it does, it becomes inadmissible); therefore the 
number of cut(z) and find-min(w) over all cases 3 is O(m). Thus the total number of dynamic 
tree (and also other arithmetic or control) operations is at most O(m). Hence, by Theorem 1, the 
running time of each Cancel operation is O((m + n) log n) = O(m log n). The overall running time 
of Cancel-and-Tighten is therefore O(m2n log2 n) (strongly polynomial running time bound) or 
O(mn log n log(nC)). 

3 Dynamic trees implementation 

We now turn to the implementation of dynamic trees. Here we present the definitions; we will cover 
the running time analysis in the next lecture. The dynamic trees data structure is a collection of 
rooted trees. We decompose each rooted tree into a set of node-disjoint (directed) paths, as shown 
in Figure 4. Each node is in precisely one path (possibly containing that node only). We will refer 

7 - Dynamic Trees-3 



Figure 4: Decomposition of rooted tree. 

to the edges on these paths as solid edges, and we will refer to the remaining edges as dashed 
edges, or middle edges. Each path is directed from its tail (highest in the tree) to its head lowest 
in the tree). 

There are many possible ways to partition a tree into solid paths. For instance, if we are given a 
solid edge and a dashed edge which are both children of a single parent, we can swap the solid and 
dashed edges. This follows from the basic observation that, for any middle edge (v, w), w is the tail 
of a solid path. This operation is known as splicing as shown in Figure 5. 

Splicing 

Figure 5: Splicing in the rooted tree. 

In a dynamic tree, each solid path is represented by a splay tree, where the nodes are sorted 
in increasing order from the head to the tail, as shown in Figure 6. In other words, the node with 
smallest key is the head (the lowest in the tree), and the node with largest key is the tail (the highest 
in the tree) 

In addition, we will maintain links between the different splay trees. The root of each splay 
tree is attached to the parent of the tail of the path in the rooted tree, as shown in Figure 7. For 
example, the edge (e, f) in the original rooted tree becomes the edge (e, i) linking e to the root i of 
the splay tree corresponding to the solid path f → i. The entire data structure — with the splay 
trees corresponding to the same rooted tree being connected to each other — forms what is called 
a virtual tree. Any given node of the virtual tree may have at most one left child and at most one 
right child (of a splay tree), as well as any number of children attached by dashed edges. Children 
attached by dashed edges are known as middle children, and we draw them in between the left 
and right children. 

Notice that we can reconstruct the rooted tree from the virtual tree. Each splay tree corresponds 
to a solid path from the node of lowest key to the node of highest key. In addition, for any middle 

7 - Dynamic Trees-4 



f 

e 

d 

c 

b 

a 

c 

b 

a 

e 

fd 

HEAD 

TAIL 

Figure 6: Representation of solid path from head to tail in BST (Splay Tree). 

a b c 

d 

e 

f 

ig 

h 

b a c e 

i 

f 

g 

h 

d 

Figure 7: Rooted tree on the left and corresponding virtual tree on the right. 

edge, we get an edge of the original rooted tree; for example, to (e, i) in the virtual tree, corresponds 
the edge (e, f) in the original tree where f is the node with highest key in the splay tree in which i 
resides. 

Note that there are many different ways to represent rooted trees as virtual trees, and we can 
modify virtual trees in various ways which don’t affect the rooted trees. 

In particular, we define the Expose(v) operation, which brings a given node v to the root of the 
virtual tree. This operation involves three main steps: 

1. Make sure that the path from v to the root only uses roots of splay trees. This can be done 
by performing splay operations whenever we enter a new splay tree. 

2. Make sure that the path from v to the root consists entirely of solid edges. We can ensure this 
through repeated splicing. 

3. Do the splay operation to bring v to the top of the resulting splay tree. This is justified since 
v is now in the same splay tree as the root of the original rooted tree. 

7 - Dynamic Trees-5 


