
MIT OpenCourseWare
http://ocw.mit.edu 

6.854J / 18.415J Advanced Algorithms 
Fall 2008��

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu/terms
http://ocw.mit.edu


18.415/6.854 Advanced Algorithms December 3, 2008 

Lecture 23 
Lecturer: Michel X. Goemans 

1 Voronoi Diagrams 

1.1 Introduction 

Suppose we are given a set P of points in the Euclidean plane, and we are interested 
in the problem of, given a point x, find the closest point of P to x. One approach 
to this problem is to divide the plane into regions associated with each pi ∈ P for 
which x is closest to pi. Finding these regions in two dimensions is the problem of 
constructing the Voronoi Diagram. One application of this structure is to compute 
the mimumum spanning tree of a complete graph of n vertices in the Euclidean plane 
in time O(n log n). 

1.2 Definitions 

We will focus on the two-dimensional case. We are given a set 

P = {p1, p2, . . . , pn} ⊆ R2 

and we want to partition the plane into regions which correspond to points which are 
closest to a specific point. 

Figure 1: Voronoi Diagram (solid lines) for four points p1, p2, p3, p4. 

23-1 



� 

�

Definition 1 (Voronoi Cell) Given a set of points in R2 , P = {p1, p2, . . . , pn} ⊆ 
R2, a Voronoi Cell V (pi) is defined by: 

V (pi) = {x : d(pi, x) < d(pj , x) ∀j =� i}. 

Another way to define a Voronoi Cell is by defining h(pi, pj) to be the halfplane 
containing pi defined by the bisector of pi and pj . A cell is then defined as: 

V (pi) = h(pi, pj ). 
j=i 

This impies that every cell is convex and is a (convex) polygonal region with at most 
n − 1 sides. 

Definition 2 (Voronoi Diagram) A Voronoi Diagram is a collection of Voronoi 
cells that covers R2 . 

1.3 Motivation 

Why is a Voronoi Diagram useful? If the points represent firestations, the Voronoi cells 
represent the partition of the plane into regiosn which are closer to each firestation. 
More generally, given a point in a plane, it is useful to know the point from a set of 
points that is closest to it. Of course, this also requires a data structure to be able to 
answer the point location problem of, given x, finding the Voronoi cell that contains it. 
We will only learn how to construct the Voronoi diagram, not how to build a query 
datastructure for it. . 

Having such a diagram is useful for many problems. For example, a Voronoi 
diagram allows computation of the Euclidian minimum spanning tree on a set of 
points in O(n log n) time, see the problem set. 

1.4 Properties 

The Voronoi cells are all disjoint and their closures cover the entire plane. The 
Voronoi diagram will consist of edges (possibly semi-infinite, extending to infinity) 
and vertices where 3 or more of these edges meet; these vertices will be equidistant 
to 3 or more points of P . One can characterize the vertices and the edges in the 
following way: 

Lemma 1 1. A point q ∈ R2 is a vertex of a Voronoi Diagram ⇐⇒ there exists 
an empty circle (i.e. its interior is empty) centered at q having at least 3 points 
of P on its boundary. 

2. Part of the bisector between pi and pj is an edge of the Voronoi diagram ⇐⇒ 
there exists an empty circle centered at a point q having precisely pi and pj (and 
no other point) on its boundary. 

23-2 



� 

We look now at how ’complex’ a Voronoi diagram can be. We know that each cell 
is delimited by at most n − 1 sides (edges), but in the lemma below, we show that 
collectively all cells do not have too many edges and vertices. 

Lemma 2 For a Voronoi diagram with n points, the following relations hold: 

• The number of vertices of a Voronoi diagram is nv ≤ 2n − 5. 

• The number of edges in any Voronoi diagram is ne ≤ 3n − 6. 

Figure 2: To prove Lemmma 2 we add a point q∞ to the Voronoi Diagram (solid 
lines), and connect all of the infinite edges to this point (shown in dotted lines). 

Proof: We can view the Voronoi diagram as a planar graph, G, with some edges 
extending out to infinity. We add a point at infinity q∞ representing ‘infinity’ and 
connect edges that extend to infinity to this point as shown in Figure 2. Note that 
the resulting graph G� is still planar. 

The number of vertices in G� is nv + 1; the number of edges is ne, and the number 
of faces is n. By Euler’s formula, we have 

nv + 1 − ne + n = 2. 

Since we know that vertices will have at least 3 edges incident to them, we obtain, 
by summing the degrees over all vertices, that: 

d(v) = 2ne ≥ 3(nv + 1). 
vertices v 

23-3




� 

Combining this with Euler’s formula, we get: 

2(nv + 1) + 2n ≥ 4 + 3(nv + 1) 

or 2n − 5 ≥ nv. Using this in Euler’s formula, we now get 

ne = nv − 1 + n ≤ 3n − 6. 

2 Computation of Voronoi Diagrams 

2.1 Introduction 

There are two primary algorithms we want to introduce. Both of these will be shown 
to compute the Voronoi diagram in time O(n log n). First, we can reduce the com­
putation of the Voronoi diagram to that of a convex hull in R3, which is computable 
in time O(n log n); this is our first algorithm. Secondly, we will review the sweep line 
algorithm of Fortune [1]. 

2.2 Convex Hull 

Figure 3: Projection of a point onto a paraboloid in R3 . To use the convex hull to 
compute the Voronoi diagram, this projection is done for all points in the set of points 
for which we want to compute the Voronoi diagram. 

Suppose we have a set P ⊆ R2 and we want to compute the corresponding Voronoi 
diagram. Let us consider the set P � = {(xi, yi, xi 

2 +yi 
2) : (xi, yi) ∈ P }. This projection 

onto a parabola is shown in Figure 3. 

23-4




Consider the set of planes tangent to each point in P �. The intersection of the 
upper half spaces of these planes gives a polyhedral set Q whose projection back 
to R2 gives the Voronoi diagram in the following sense: the projection of the facets 
(resp. edges, vertices) of Q gives the Vornoi cells (resp. edges, vertices) of the Voronoi 
diagram. This computation can be done in O(n log n) time since this calculation is 
the geometric dual of the convex hull computation. 

If, instead, we were to compute the convex hull of P � (rather than the halfs­
paces tangent to the paraboloid at P �) and project it back to R2, we would obtain 
a straight-line drawing on P (dual to the Voronoi diagram) known as the Delaunay 
Triangulation, see problem set. 

2.3 Sweep Line Algorithm 

The idea of a sweep line algorithm is to advance a line (in 2D) or a plane (in 3D) 
down through space, processing events as they occur. We will construct the Voronoi 
diagram as we sweep the line from top to bottom, and at any instance we will only 
have needed to consider points at or above the sweep line. 

We cannot construct the entire diagram above the sweep line, but we can construct 
pieces of it. If we look at a single point above the line, pi, for some points, they will 
assuredly be closer to it than to any points below the sweep line. This forms a 
parabola C(pi) defined by the points equidistant from the point and the sweep line. 
We can find the parabola associated with each of the points. For any point that is 
above some parabola, we can correctly assign it to its Voronoi Cell. 

Figure 4: A set of parabolae C(pi) associated with four points pi. Parabolae are 
denoted with thin lines, the beach line with a thick line, and the associated sweep 
line with a thick dashed line. 

Definition 3 (Beach line) We define a Beach Line as the lower envelope of all 
parabolae C(pi) for all points above the sweep line. A beach line is shown in Figure 
4. 

23-5 



Definition 4 (Breakpoint) A breakpoint q is a point on the beach line that belongs 
to at least two parabolae. 

Figure 5: Sample beach line illustrating multiple break points originating from the 
same parabola 

The beach line is a series of segments of parabolae. A breakpoint q corresponding 
to the parabolas C(pi) ad C(pq) must be equidistant from both pi and pj since we 
know that d(q, pi) = d(q, sweep) = d(q, pj ). Furthermore, no other point of P is closer 
to q. Thus, by Lemma 1, q is part of an edge of the Voronoi diagram, and is part of 
the bisector between pi, pj . An example is shown in Figure 6. 

We will keep track of which pi the breakpoints are associated with in order. Note 
a beach line could have several segments from the same parabola, as illustrated in 
Figure 5. 

2.3.1 Events 

As we sweep the line, we are not going to keep track of the precise location of the 
beach line (as it constantly changes) but we will just keep track of the points pi 

corresponding to the parabola segments of the beach line from left to right. Several 
events can happen that modify this sequence of points pi. 

1. A ‘Site Event’ occurs when the sweep line goes through a new point pl. This 
results in additition of an arbitrarily narrow parabola around pl to the beach 
line. A sample site event is shown in Figure 7. If pl intersects the parabola 
associated with pj , we could write the change in the sequence of points as: 

pi pj pk → pi pj pl pj pk 

Note we insert exactly one segment per site event, so there are n in total. Notice 
that each such addition increases the number of segments by 2, as shown above. 

23-6




Figure 6: Illustration of points q on an edge of a Voronoi diagram as constructed by 
a moving sweep line. 

We’ll see that this is the only way of creating a new segment in the beach line, 
so this implies that the total number of segments in the beach line is at most 
2n − 1 (1 segment for the first site event, and 2 more for each subsequent site 
event). 

2. A ‘Circle Event’ occurs when lowering the beach line causes a segment to disap­
pear from the beach line. This boundary case is illustrated in Figure 8, which 
can be compared to Figure 6 to show the efffect of a moving sweep line. 

When a segment disappears, we have discovered a new vertex in the Voronoi 
diagram. Indeed, when a circle event occurs, we must have the three closest 
points equidistant to the vertex, and thus we have a vertex by Lemma 1. 

The center of the circle is determined by p1, p2 and p3 (corresponding to 3 
consecutive segments on the beach line), and the circle event will happen when 
the sweep line is tangent to the circle (below it). When a circle event happens, 
the beach line is modified in the following way: 

p1 p2 p3 → p1 p3 

. 

Claim 3 The only way for the beach line to change is through a site event or a circle 
event. In other words, these are the only ways to create and remove segments. 

We will not formally prove this – this is intuitive. 

23-7 



Figure 7: Site event. Parabolae shown with thin lines and the beach line shown as a 
thick line. 

2.3.2 Data Structures 

In order to construct a diagram, we will describe three data structures: 

1. Event queue: 

Construct a priority queue containing events. The key of an event is its y-
coordinate. For a site event the y-coordinate is the y-coordinate of the asso­
ciated point. For a circle event, this is the position of the sweep line which is 
(lower) tangent to the circle. 

We first insert the n site events into the priority queue, as we know the y 
coordinate of all the points. Consider moving the line down and processing 
events as they occur. Circle events are defined by looking at three consecutive 
segments of the beach line. Every time we introduce a new segment in the 
beach line, as happens in a site event, we potentially create two new circle 
events (potentially, since three consecutive segments create a circle event only 
if the 3 points are distinct). We may also need to delete some circle events. 

Let us consider the addition shown in Figure 7. We will have removed the 
potential circle event pi pj pk and added potential circle events pi pj pl and 
pj pl pk. Note that the deleted event can be thought of as a fake event because 
it was removed before it really happened and was processsed. Still such a circle 
event was added to the event queue and then removed. There is at most one 
deleted (fake) circle event for each site event processed. Notice that the number 
of real circle events is equal to the number of vertices of the Voronoi diagram, 
nv ≤ 2n − 5. 

Any circle event that is processed is real, and leads to a segment of the beach 
line disappearing. In terms of Figures 6 and 8, we would take p1 p2 p3 to p1 p3. 

23-8




Figure 8: Circle event. Parabolae shown with thin lines, Voronoi diagram with thick 
lines, and the sweep line with a thick dashed line. 

In general, we can write this as “Go from pi pj pk pl pm to pi pj pl pm”. We may 
need to delete up to two circle events corresponding to the lost segment and 
add two new events, corresponding to the new order. In this example, we are 
deleting circle events pi pj pk and pk pl pm and adding pi pj pl and pj pl pm (or 
a subset of them if some of the indices are equal). We are always adding and 
deleting a constant number of events (for each site event and real circle event), 
thus the total number of additions and deletions to the priority queue will be 
linear. Since we must process O(n) events corresponding to O(n) priority queue 
operations, the total runtime will be O(n log n). 

2. Beach line encoding: 

We keep track of the points corresponding to the parabola segments constituting 
the beach line and the breakpoints pi pj by creating a binary search tree in which 
points are leaves and internal nodes are breakpoints. 

Note that this is an extension of the standard binary search tree because we 
have two different types of nodes (parabola segments and breakpoints). This 
prevents us from directly using a splay tree, since the splay action permutes the 
leaves and branches of the tree. One way to deal with this is to forget about 
parabola segments, and keep track of the breakpoints (as pairs of points), keyed 
from left to right. 

When a site event occurs, we need to be able to locate the x value in the 
beach line. To use a binary search tree, we thus need to be able to perform 
binary comparisons to determine if the desired x value is to the left or right 

23-9




of a breakpoint. Given a breakpoint as an ordered pair (pi, pj ) and a sweep 
line, we can easily compute the x position of the breakpoint and decide if we 
must move to the right or to the left. In a circle event, we have three parabola 
segments and must remove the middle one. This is a delete operation. Thus 
there are a constant number of BST operations per circle or site event. Using 
a BST with amortized cost O(log n) time per operation, maintaining the beach 
line is therefore O(n log n) time. 

3. Voronoi Diagram: 

Let us replace each edge (shared by 2 cells) of the Voronoi diagram with two 
corresponding directed half-edges which are ‘twin’ to each other. Each half edge 
corresponds to one of the two cells, and each is oriented counterclockwise (with 
respect to its cell). For each half-edge, we define pointers: 

• to its twin, 

• to the next half-edge on the cell, 

• to the previous half-edge on the cell. 

From a given vertex we can follow the half-edges around a cell; by calling twin, 
we can move between cells and we can for example enumerate all half-edges 
incident to a vertex. 

Let us consider how to modify this structure upon processing a site (Figure 
7) and circle (Figure 8) events. In a site event, the two new breakpoints are 
equidistant from pj and pk, and are part of an edge of the Voronoi diagram. 
This will create two new half-edges. In a circle event we link the half edges that 
meet to construct the diagram. Thus there are a linear number of operations 
on this data structure as wll. 

In summary, the first structure requires a linear number of operations each taking 
O(log n) time. Similarly, for the second data structure, with a balanced BST. The 
last one requires constant time per event, for a linear number of events. Hence the 
total time to construct a Voronoi diagram is O(n log n). 

We can show this is optimal because the Voronoi diagram of the set of points 
given by P = {(xi, ±1)} solves the problem of sorting P , hence the diagram must 
take at least O(n log n) time to sort. 

Note we use ±1 since we have assumed throughout this that we are not in the 
purely degenerate case in which all points are colinear; one can show that this is 
indeed the only case in which the Voronoi diagram has infinite lines and no vertices. 

23-10




References 

[1] S Fortune. A sweepline algorithm for voronoi diagrams. In SCG ’86: Proceedings 
of the second annual symposium on Computational geometry, pages 313–322, New 
York, NY, USA, 1986. ACM. 

23-11



