MIT OpenCourseWare
http://ocw.mit.edu

6.854J / 18.415J Advanced Algorithms
[Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

18.415/6.854 Advanced Algorithms September 8th, 2008

Network Flows

Lecturer: Michel X. Goemans

1 Introduction

In the previous lecture, we introduced Fibonacci heaps, which is a data structure that provides an
efficient implementation of priority queues. In this lecture, we switch our attention from efficiency
to algorithm design. In particular, for the next few lectures we study Network Flows.

Network flows are a family of problems that are concerned with a directed graph and properties of
functions defined on the graph. A flow is an abstraction of elements which typically do not disappear
while travelling through the edges of the directed graph; it could be current in an electrical network,
packets in a computer network, cars/trains in a transportation network, or some purely abstract
object. In the maximum flow problem, we try to obtain a flow on the graph such that the flow going
from a given source vertex to a given sink vertex is maximized.

In today’s lecture, we focus on two instances of network flow problems: the Shortest Path Problem
and the Maximum Flow Problem. There are other variants of network flow problems that we
cover later in this class. For example, we will talk about the minimum cost flow or minimum cost
circulation problem, which is a generalization of both the shortest path problem and the maximum
flow problem. We will also cover the bipartite matching problem, which has two versions: cardinality
bipartite matching (a special case of the maximum flow problem) and weighted bipartite matching
(a special case of the minimum cost flow problem). There are still other network flow problems that
we do not discuss such as the multi-commodity flow problem. Figure 1 illustrates how these network
flow problems are related to one another.

2 Shortest Path Problem

Let G = (V, E) be a directed graph, where V denotes the set of vertices and E denotes the set of
edges. Let £: E — R be a length function defined on the edges of G.' Given two vertices s and ¢ in
V', the s — t shortest path problem is the problem of finding a simple directed path on G from s to
t of minimum total length. The length of a path P is defined to be the sum of the lengths of all the
edges in P:

(P)= Y tvw).

In this problem, we refer to s as the “source” vertex and ¢ as the “sink” vertex.

We note that if the length function ¢(e) is non-negative for every edge e € E, then Dijkstra’s
algorithm using Fibonacci heaps provides a O(m + nlogn) solution to this problem, where m = |E|
and n = |V|. On the other hand, if some edges of G have negative lengths, but the graph has
the property that for every cycle C the total length of the cycle is non-negative, then we can use
the Bellman-Ford algorithm to solve the s — ¢t shortest path problem in polynomial time. For more
information on Dijkstra’s and the Bellman-Ford algorithm, see Chapter 24 in [CLRS].

For v,w € V, we use the notation £(v,w) to mean the length of the edge e = (v, w). In these notes, we use the
two notations ¢(e) and £(v,w) interchangeably.

lect-1

[Multi-commodity Flow]

~

[Minimum Cost FIow]

~

Weighted Bipartite
Matching

Shortest Path Maximum Flow

~

Cardinality Bipartite
Matching

Figure 1: Some instances of network flow problems and how they are related to one another, where
the arrow indicates “is a special case of”. In this lecture we only cover the shaded boxes: the shortest
path problem and the maximum flow problem.

Remark 1: In this lecture, we consider directed graphs only. For undirected graphs with non-
negative edge lengths, we can still apply Dijkstra’s algorithm by transforming every (undirected)
edge into two edges of opposite directions with the same length, as illustrated in Figure 2.

£=5

a) Original undirected edge. (b) Directed edges after the transfor-
mation.

Figure 2: Transformation of an undirected edge into two directed edges to apply Dijkstra’s algorithm.

However, the same trick does not apply for the Bellman-Ford algorithm, because even if the original
undirected graph satisfies the constraint that every cycle has non-negative length, the new directed
graph resulting from the transformation might violate this constraint. An example of this case is
given in Figure 3.

The problem of finding the shortest path between two vertices in an undirected graph where every
cycle has non-negative length is still solvable in polynomial time, but it is a much harder problem.
We will discuss this problem later in the class if time permits.

Remark 2: In directed graphs with non-negative, given a shortest path P between two vertices, the
path between any two vertices in P is also the shortest path between those two vertices. However, this
is not necessarily true in the case of undirected graphs (and this prevents the use of a transformation
to a directed graph). For example, in the graph given in Figure 3(a), the shortest path between
vand wis P = {(v,2), (2, w)} with length 0. However, the shortest path between v and z is not
{(v,2z)} as it appears in P, but rather {(v,w), (w,z)} with length 0.

lect-2

1 1
(a) Original undirected graph. Every (b) Directed graph after the transfor-
cycle has non-negative length. mation. The cycle {(w, 2), (z,w)} has

negative length.

Figure 3: An example where the given transformation creates a negative cycle so that the Bellman-
Ford algorithm cannot be applied.

3 Maximum Flow Problem

The second instance of network flow problems that we study in this lecture is the maximum flow
problem. In this problem, we want to find a flow from a source vertex to a sink vertex with maximum
flow value.

More precisely, we define the problem {ramework as follows. Let G = (V, E) be a directed graph,
where V' is the set of vertices and E is the set of edges of G. Let n denote the cardinality of V' and
m denote the cardinality of E. Given a vertex v € V, let NT(v) (resp. N~ (v)) denote the set of
endpoints of edges coming out (resp. into) v:

Nt()={weV: (v,w) € E},
N-(v)={weV:(ww) e E}.

Furthermore, let u: E — Ry be a capacity function that limits the amount of flow that we can send
through each edge of G. We refer to the graph G and the capacity function u collectively as the
network G. Given a source vertex s € V and a sink vertex t € V, we are interested in determining
how much flow we can push from s to ¢ through this network.

3.1 Notions of Flow

Loosely speaking, a flow is an assignment of quantity to the edges of G under certain constraints.
There are two notions of flow that we use in this class: raw flow and net flow.

Definition 1 A raw flow on a network G is a functionr: E — R satisfying the following properties:
1. Capacity constraint: For all (v,w) € E, 0 < r(v,w) < u(v,w).

2. Conservation constraint: For allv € V' \ {s,t},

Z r(v,w) — Z r(w,v) = 0.

weV:(v,w)EE weV:(w,w)EE

Given a raw flow r, the flow value of r is defined to be the total excess of flow at the source vertex
s, i.e.

We now give the second definition of flow, which is the one we primarily use for the rest of these
notes.

Definition 2 Given a raw flow r on a network G, the net flow f with respect to r is the function
fi+ E— R given by f(v,w) =r(v,w) — r(w,v).

An example of raw flow and the corresponding net flow is illustrated in Figure 4.

r=2.u=4 f=-l,u=4
r=3,u=4 f=lLu=4
(a) Raw flow. (b) Net flow.

Figure 4: An example of a raw flow and its corresponding net flow.

Before we go any further, we first note that from the definition given above, to compute f(v, w) we
need both r(v, w) and r(w,v). However, there is a slight difficulty because even if (v,w) € E, (w,v)
might not be an edge of G. To resolve this issue, we assume that the graph G has the property that
if (v,w) € E then (w,v) € E. Given a directed graph G, we can achieve this property by modifying
G as follows:

1. Consider the set E' = {(v,w) € E : (w,v) ¢ E}.
2. For every (v,w) € F’, create a new edge (w,v) with edge capacity 0 and add it to E.

Similar to the definition of the flow value of raw flow, the flow value of f is defined to be the total
amount of net flow that comes out from the source vertex s:

=3 fsw), &
wEN(s)
where we now use N (s) to denote NT(s) = N~ (s), the common set of out-neighbors and in-neighbors

of s.
From the definition of net flow, it is easy to check that the net flow f satisfies the following properties:

1. Skew symmetry: For all (v,w) € E, f(v,w) = —f(w,v).
2. Capacity constraint: For all (v,w) € E, f(v,w) < u(v,w).
3. Flow conservation: For all v € V'\ {s,t}, 3 cn(,) f(v,w) = 0.

Note that, unlike r, the flow f has no restriction on being negative. In fact, f will be negative for
some edges, unless it is the 0 flow everywhere. For example, if the original graph G has an edge
(v, w) with positive raw flow r(v, w) such that (w,v) is not an edge, then in the modified graph, the
edge (w,v) has negative net flow f(w,v) = —r(v,w). Note that this does not violate the capacity
constraint since f(w,v) < u(w,v) = 0. Figure 5 illustrates an example of a net flow.

For the maximum flow problem, we use the notion of net flow. For the rest of these notes, unless
specified otherwise, the term flow refers to net flow. We can now define the maximum flow problem
properly.

Definition 3 (Maximum Flow Problem) Given a network G, a source vertex s € V, and a sink
vertex t € V, the mazimum flow problem is the problem of finding a flow through G of maximum
flow value.

Notice that modifying G by adding to E the new edges needed to define the net flow does not affect
the maximum flow problem, since the new edges all have zero capacity.

lect-4

Figure 5: An example of a flow of a network. The label 2/y on each edge e is such that x = f(e)
and y = u(e). Here the flow value is |f]| = 3.

3.2 s—t Cut

We now define the notion of cut, which helps us to construct the solution of the maximum flow
problem.

Definition 4 Suppose that we have a network G with source vertex s and sink vertex t. Let S be a
subset of V such that s € S andt ¢ S, and let S =V \'S. Then the s —t cut with respect to S is
defined to be

(S:5)={(v,w)€eE:veS andw e S}.

We can also denote an s —t cut by 67 (S) or 6 (S), but in this class the preferred notation is (S : S)
as introduced above. Figure 6 shows an example of an s — ¢ cut.

Figure 6: An example of an s — ¢ cut. The solid arrows represent the edges in (S : S).

Definition 5 Given an s —t cut (S : S), then its cut capacity is defined to be the total capacity
of the edges across the cut:

u(S:S) = Z u(v,w).

(v,w)€e(S:S)

3.3 Connection between Flows and Cuts

We have the following lemma that connects flows and cuts.

lect-5

Lemma 1 Let G be a network with source s and sink t. Then for every flow f and every s —t cut
(S:5), we have

fl=" > flww) (2)

(v,w)€(S:S)
In particular, this implies that |f| < u(S :S).
Proof: From the flow conservation property of f, for every vertex v € S\ {s}, we have

Z flv,w) =0.
weN (v)
Taking the sum over all vertices v € S\ {s} gives us
Z Z flv,w) =0.
vES\{s} weN (v)
Adding the definition of the flow value of f (Eq. (1)) to the equation above yields
fl= > few+ Y, > flw)
wEN (s) veS\{s} weN(v)

Now notice that if an edge (v, w) appears in either of the summations above and w € S, then (w,v)
also appears in the summations. Therefore, we can rewrite the equation above in a slightly different

way:
1= > fww+Y) fv,w).

(v,w)e(S:9) veSweS

By the skew-symmetry property of f, the second summation in the equation above is equal to 0
since f(v,w) and f(w,v) cancel each other out. Therefore, we conclude that

1= > fww),
(v,w)€(S:S)

as desired.

Furthermore, by the capacity constraint of f, we can write

fl= Y few < Y uww) =u(S:5).

(v,w)€(S:5) (v,w)€(S:S)

This completes the proof of the lemma. O

In particular, if we take S = V' \ {t} and S = {t}, then Eq. (2) from Lemma 1 tells us that the
flow coming from s is equal to the flow going to ¢. In other words, there is no loss in the flow of the
network.

An important corollary to Lemma 1 comes from the observation that since the value of any flow f is
always less than equal to the capacity of any s —¢ cut (S : .5), then it also holds for the case when f
is a maximum flow and (S : S) is a minimum cut. This fact is known as the Weak-Duality Lemma.

Corollary 2 (Weak-Duality Lemma) Let G be a network with source vertex s and sink vertex
t. Then B
max |f| < min u(S : 5),
f (5:9)
where the maximum is taken over all possible flows and the minimum is taken over all possible s —t
cuts in G.

lect-6

4 The Max-Flow and Min-Cut Theorem

In this section, we show that the inequality in the Weak-Duality Lemma is actually an equality, that
is, the maximum value of a net flow is equal to the minimum value of an s — ¢ cut. This fact was
first discovered in 1956 by by Elias, Feinstein, and Shannon (see [EFS]), and independently by Ford
and Fulkerson in the same year.

Theorem 3 (Duality Theorem/Maxflow Mincut Theorem) In a network G, the following
equality holds:

max | f| = min u(S : 9).
f (S:5)

In order to prove the theorem, we first have to introduce some new definitions. The first one is
residual capacity, which denotes the extent to which a flow on some edge is less than the capacity
on that edge.

Definition 6 The residual capacity of G with respect to f is the function us: £ — R defined by
ug(v,w) = u(v,w) — f(v,w) for all (v,w) in E. Hence, the residual capacity on the edge (v, w) is the
amount of additional flow that we can push from v to w, without violating the capacity constraint.

~

flo,w) = ulv,w

We observe that the capacity constraint implies that u;(v,w) = u(v,w) — ,
,w), so that us(v,w) >

u(
flw,v) < wu(v,w) + u(w,v). Moreover, since [is a flow, u(v,w) > f(v
Hence, the following inequality holds for any edge (v,w) in E:

+
0.

0 <us(v,w) <ulv,w)+ u(w,v).

All the edges with positive residual capacities are members of a set that we call the residual arcs.

Definition 7 The residual arcs Ef of G with respect to f is the set given by Ey = {(v,w) € E :
ug(v,w) > 0}. Intuitively, the residual arcs is the subset of E that contains those edges through
which we can push a non-zero additional flow.

Given the vertices of a network G, its residual arcs, and its residual capacity, we can make a new
network, the residual network.

Definition 8 The residual network Gy of the network G with respect to f is the network given
by the graph Gy = (V, Ey) together with the capacity function uy.

The residual network is used to understand to what extent a flow is not maximal, and we do that
by defining a certain kind of path in the residual network that we call augmenting path.

Definition 9 An augmenting path of G with respect to f is a directed simple path from the source
s to the sink t in the residual network G'y.

In fact, the existence of an augmenting path in a residual network for a given flow indicates that
the flow is not maximal, as we prove in the following lemma.

Lemma 4 If a residual network Gy has at least one augmenting path P, then f is not a marimum

flow.

Proof: By definition, the residual network G ¢ includes only edges with non-zero residual capacity
with respect to f. Therefore, an augmenting path P of Gy is a path through which we can push
more flow in the original network G, and the additional amount of flow is upper bounded by the
“bottleneck” of P.

lect-7

More precisely, consider the quantity given by

P)= min us(v,w).
e(P) (v{gl)relpuf(v w)

Observe that e(P) > 0, because P C E so that P is a finite set of positive real numbers.

Then, construct the flow f’ given by

flv,w) +¢e(P) if (v,w) € P,
[(v,w) =< f(v,w) —e(P) if (w,v) € P,
flv,w) otherwise.
Note that f’ is satisfies all the flow constraints for G. Moreover, |f'| = |f| + €(P) > |f], so that the
flow f is not a maximum flow. O

Using Lemma 4 and the Weak-Duality Lemma, we prove now the Maxflow Mincut Theorem.

Proof of Theorem 3: Let f be a flow of maximal value for G = (V, E). By Lemma 4, the residual
network Gy has no augmenting path, since, if it did, then f would not be of maximal value.

Consider the set S of vertices v € V' such that there exists a directed path from the source s to v in
Gjy. By definition, s € S. Moreover, G has no augmenting path, so that ¢t ¢ S. Therefore, (S : S)
is an s —t cut.

Now notice that us(v,w) = 0 for any (v,w) € (S : S). By definition, us(v,w) = u(v,w) — f(v,w),
so that f(v,w) = u(v,w) for any (v,w) € (S :S). Thus, we can compute that

A= S few= Y uww)=uS:5).
(v,w)E(S:g) (v,w)E(S:g)

The Weak-Duality Lemma tells us that the value of any flow is upper bounded by the capacity of
any s — t cut, so we can conclude that

max | f| = min u(S : 5).
f (5:5)
We summarize all of the results in the following theorem.

Theorem 5 (Max-Flow Min-Cut Theorem) Let G be a network and f be a flow on G. Then,
the following statements are equivalent:

1. f is a flow of maximal value;
2. Gy has no augmenting path; and
8. |fl=u(S:S) for some s —t cut (S:8S).

Proof: We prove the equivalence of the statements by showing that (1) = (2) = (3) = (1), that
is:

e (1) = (2): This implication is the contrapositive of the implication proved in Lemma 4.
e (2) = (3): This implication follows from the proof of the Maxflow Mincut Theorem.

e (3) = (1): This implication follows from the Weak Duality Lemma.

lect-8

5 The Ford-Fulkerson Algorithm

In 1956 Ford and Fulkerson used the Max-Flow Min-Cut Theorem to design an algorithm, called the
Ford-Fulkerson algorithm, to compute the maximal flow of a network (see [FF]). The idea of their
algorithm is very simple: as long as there is an augmenting path in the residual network we push
more flow along that path in the original network. This idea is illustrated as pseudocode below.

FORD-FULKERSON(G)

1 start with a zero flow f (or any feasible flow)
2 while G has an augmenting path P
3 do push €(P) more units of flow through P, so that |f| — |f| + e(P)

Before we declare the idea above an algorithm, there are two issues that need to be addressed:
1. Does the algorithm ever halt?

2. If there is more than one augmenting path in the residual network, which one should we choose?
And how does our decision affect the correctness and running time of the algorithm?

We consider three cases.

Case 1: Assume that the capacity function u of G is integer valued. Then we can make the
following observations:

1. At every iteration of FORD-FULKERSON, the flow f is integer valued, and therefore so are the
residual capacities. Indeed, this is the case at the beginning when f = 0, and by induction,
this is maintained since ¢(P) is the minimum of a set of positive integers and thus a positive
integer, and therefore the resulting flow after an augmentation is also integer valued.

Furthermore, since e(P) > 1 (being a positive integer) and since the minimum-cut value (and
thus the maximum flow value) is finite, it follows that the FORD-FULKERSON always halts.

2. Since the algorithm halts and every intermediate flow is integer valued, the maximum flow
output will also be integer valued. That is, if the capacities of a network are integral then
there is a maximum flow thaet is also integral. This is a very useful property that has many
applications. One such application is the cardinality bipartite problem, as we will see in the
next lecture.

3. The number of iterations is bounded by |f| < |N(s)|U < nU, where U = max{u(s,w) : w €
N(v)}. Note that U may not be polynomial in the size of G. In fact, Figure 7 shows an example
of a graph where FORD-FULKERSON takes exponential time to halt. The dotted and dashed
lines represent paths from the source to the sink. The algorithm might choose alternatively
and repeatedly the two paths as augmenting paths. In such a case, the algorithm will take
O(2%) time to terminate. Thus, we need a better policy to choose the augmenting path.

Case 2: Assume that the capacity function uw of G is rational valued. Then, a similar discussion
as the one carried out in Case 2 shows that FORD-FULKERSON always halts, that the value of the
maximal flow is rational, and that there exists an example of a network for which the running time
is exponential. The arguments are similar because the rational capacities behave like integers if we
consider them all as written with the same least common multiple.

Case 3: Assume that the capacity function u of G is real valued. In the general case (i.e. u(E) C Q4
is not necessarily true) there exist instances of networks such that FORD-FULKERSON never halts.
Moreover, in such cases, the value of |f| may converge to a sub-optimal value.

lect-9

Figure 7: An example of a network for which the Ford-Fulkerson algorithm may not halt in polyno-
mial time (the reverse edges and the corresponding flows are not shown for clarity).

6 Fixing the Ford-Fulkerson Algorithm

The problems of the Ford-Fulkerson algorithm that we examined at the end of Section 5 can be
addressed, at least in part, by specifying a policy for choosing the augmenting path at every iteration.
A good policy must satisfy two properties:

1. Tt is possible to efficiently (e.g. in polynomial time) find the augmenting path specified by the
policy; and

2. The maximum number of augmentations (and thus the total time) is polynomial.

In fact, we should be precise when we say that a running time is “polynomial”, because it means
different things depending on the model of computation. Also, ideally, we would like algorithms for
which the number of operations does not depend on the size of the numbers involved in the input
(e.g. the capacities in a maximum flow instance); such algorithms could be used even if the data was
irrational (provided our model allows (arithmetic) operations on irrational data).

Given an instance I of a number problem (a computational problem involving numbers as input),
let size(I) denote the number of bits needed to represent the input and number(I) denote the
number of numbers involved in the input. For example, for a maximum flow instance, number(I)
corresponds to the number m of edges while size(I) corresponds to the number of bits needed to
represent all edge capacities. For the solution of an n x n system of linear equations, number(I) will
be n? +n (n? for the matrix and n for the right-hand-side) while size(I) is the sum of the binary
sizes of all the entries of the matrix and the right-hand-side.

We say that an algorithm A running on an instance I is (weakly) polynomial if

e the number of operations performed by A is at most polynomial in size(I) and

e the size of any number obtained during the execution of A is at most polynomial in size(I).
For an algorithm to be strongly polynomial, we require that

e the number of operations performed by A is at most polynomial in number(I) and

e the size of any number obtained during the execution of A is at most polynomial in size(I).

Thus, the two notions differ only in whether the number of operations performed depends on the
size of the numbers in the input. For example, Gaussian elimination can be shown to be strongly
polynomial for solving a system of equations (it is clear that the number of operations is at most
O(n?), but one can also show that the size of the numbers obtained through the algorithm are
polynomially bounded in the size of the input). On the other hand, Euclid’s algorithm for computing
the ged is clearly not strongly polynomial (as only 2 numbers are involved), but is polynomial.

lect-10

We now consider two policies for choosing the augmenting path in the Ford-Fulkerson algorithm.
Both were proposed by Edmonds and Karp in 1972 [EK]. Both lead to polynomial algorithms, while
the second leads to a strongly polynomial algorithm.

Pick the Fattest: Suppose that, in the case of integral capacities, at every iteration of the Ford-
Fulkerson algorithm, we pick the “fattest” augmenting path, that is, a path P such that e(P) is
maximized. Given this policy:

e By adapting Dijkstra’s algorithm to find this bottleneck path rather than the shortest path, it
is possible to find the augmenting path that maximizes e(P) in O(m + nlogn) time;

e It can be shown that the number of iterations is O(mlogU), where U is a bound for the
capacity function, yielding a running time for this fattest augmenting path algorithm of O((m+
nlogn)mlogU).

A similar argument works for rational capacities as well. However, for irrational capacities, the time
complexity given above does not apply, and this analysis does not even show whether the algorithm
terminates.

Pick the Shortest: Suppose that, in the case of integral capacities, at every iteration of the Ford-
Fulkerson algorithm, we pick the “shortest” augmenting path, that is, a path P such that its number
of edges is minimized. Given this policy, we observe that:

e Using breadth-first search, it is possible to find the augmenting path with a minimum number
of edges in O(m) time (by breadth-first-search);

e It can be shown that the number of iterations is O(nm), yielding a running time for the
algorithm of O(nm?). Thus this shortest augmenting path algorithm is strongly polynomial
and therefore halts even if capacities are irrational.

Next time we will discuss more network flow problems.

References

[CLRS] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction
to Algorithms, Second Edition, MIT Press and McGraw-Hill, 2001.

[EFS] P. Elias, A. Feinstein, and C. E. Shannon, Note on mazimum flow through a network, IRE
Transactions on Information Theory IT-2, 117-119, 1956.

[EK] Jack Edmonds, and Richard M. Karp, Theoretical improvements in algorithmic efficiency for
network flow problems, Journal of the ACM 19 (2): 248-264, 1972.

[FF] L.R.Ford, D. R. Fulkerson, Mazimal flow through a network, Canadian Journal of Mathematics
8: 399-404, 1956.

lect-11

