
MIT OpenCourseWare
http://ocw.mit.edu

6.854J / 18.415J Advanced Algorithms
Fall 2008��

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

�

�

�

�

18.415/6.854 Advanced Algorithms November 21, 2008

Lecture 19
Lecturer: Michel X. Goemans

1 Introduction

In this lecture, we revisit MAXCUT and describe a randomized γ (≈ .87856)-approximation al­
gorithm. We also explore SPARSEST-CUT, an NP-hard problem for which no constant factor
approximation is known. We begin to describe an O(log k) approximation using multicommodity
flows ; here k is the number of commodities. To define the relationship between the optimal values
of SPARSEST-CUT and multicommodity flow, we introduce metrics and finite metric spaces.

2 Revisiting MAXCUT

Recall the MAXCUT problem: given a graph G = (V, E) and weights w : E R+ (we could assume →
that G is the complete graph and weights are 0 for the original non-edges), maximize w(S : S̄)

(= wij) in S ⊂ V . MAXCUT can be formulated as the integer program
i∈S

j∈S̄

max wij (1 − xixj)/2
(i,j)∈E

subject to
xi ∈ {±1}, ∀i.

The prior lecture described a 1/2-approximation algorithm and an upper bound on the solution to
the above optimization, via reduction to a semidefinite program.

2.1 SDP Relaxation of MAXCUT

In the SDP relaxation, we replaced the xi with unit vectors in the sphere Sn−1 := {x ∈ R
n : ‖x‖ = 1}.

Thus, the goal of the relaxed MAXCUT was to find

max wij (1 − v T vj)/2i

(i,j)∈E

subject to
vi ∈ Sn−1 , ∀i.

Though it is not immediately clear that this represents a semidefinite program, it can be reformulated
as follows:

max wij (1 − Yij)/2,
(i,j)

subject to
Yii = 1, ∀i

Y � 0.

19-1

3

Figure 1: For the 5-cycle, the optimum vectors end up being in a lower-dimensional space (of
dimension 2), see left figure. The angle between any two consecutive vectors is 4π/5 and total SDP
value is 5(1 − cos(4π/5))/2 = 4.52 . Taking a random hyperplane through the origin gives the · · ·
cut (S : S̄), see the right figure.

Given a solution to the SDP in the form of unit vectors vi, we would like to find a feasible S giving as
large a cut as possible. The ideal is to have vertices i and j separated by the cut when (1− vT vj)/2i
is large, i.e., vi and vj are far apart on the sphere. Here is a way to do this. Choosing a hyperplane
through the origin divides the vectors into two groups, and we let S be the intersection of one
halfspace with the set of vectors. The sets of vectors on each side of the hyperplane correspond to
S and S̄. As an example, we illustrate the vectors for a cycle of length 5 in Figure 1.

Which hyperplane should we choose? Well, the optimum vectors are definitely not unique; any
rotation of them (orthonormal transformation) will also provide an optimum solution since the
objective function depends only on the inner products (vi

T vj). Therefore we should not have a
preferred direction for the hyperplane.

MAXCUT γ-Approximation Algorithm

This discussion provides the intuition behind the following randomized algorithm, due to Goemans
and Williamson ([1]):

1. Choose a unit vector r ∈ Sn−1 uniformly.

2. Let S = {i ∈ V : rT vi ≥ 0}.

Remark 1 In the case n = 2, it is easy to pick a uniform r, by taking θ ∈ [0, 2π) uniformly,
whence r = (cos θ, sin θ)T . For a general n, we should find r ∈ Sn−1 by selecting each component
independently from a Gaussian distribution, and then normalize to ‖r‖ = 1.

Theorem 1 The Goemans-Williamson algorithm is a randomized γ-approximation algorithm for
2 cos−1 x

MAXCUT, where γ = min .87856).
−1≤x≤1 π(1 − x)

(≈

Proof: “OPT” and “SDP” will denote the optimal solution to the MAXCUT instance and its
SDP relaxation. We show E[w(S : S̄)] ≥ γ SDP ≥ γ OPT.· ·

19-2

�

�

�

�

By linearity of expectations, we have:

E[w(S : S̄)] = E[
(i,j)

wij {1 if (i, j) ∈ (S : S̄); 0 otherwise}]

�
= wij Pr[(i, j) ∈ (S : S̄)].

(i,j)

If we were in dimension 2 then vi and vj are separated by the line orthogonal to r if and only
if this line falls between vi and vj and this occurs with a probability ∠(vi, vj)/π (where ∠(vi, vj)
denotes the angle between vi and vj). The same is also true for higher dimensions. Indeed, let p
denote the projection of r onto the 2-dimensional space F spanned by vi and vj . We have

T T r vi = p vi

T T r vj = p vj

implying that vi and vj are separated for the partition defined by r if and only if they are separated
for the partition defined by p. But p/ p is uniform over the unit circle in F . Therefore, || ||

Pr[(i, j) ∈ (S : S̄)] = ∠(vi, vj)/π

and, using the fact that vi and vj are unit vectors (and thus vi
T vj = cos∠(vi, vj)):

Pr[(i, j) ∈ (S : S̄)] = cos −1(vi
T vj)π.

So, we get a closed-form formula for the expected weight of the cut produced:

E[w(S : S̄)] = wij cos −1(vi
T vj)/π.

(i,j)

On the other hand, we know that

SDP = wij (1 − v T vj)/2.i

(i,j)

Since wij is non-negative, E[w(S : S̄)]/SDP ≥ the smallest ratio over all (vi, vj):

E[w(S : S̄)]/SDP ≥ min (cos−1(x)/π)/[(1 − x)/2]
−1≤x≤1

=: γ(≈ 0.87856).

Several remarks are in order.

Remark 2 The analysis is tight in the sense that, for any ε > 0, there exist instances such that
OPT/SDP ≤ γ + ε.[2]

Remark 3 It is possible to derandomize Goemans-Williamson (and achieve a performance guaran­
tee of γ); still, in practice, the fact that one can output many cuts is useful as one can then exploit
the variance of the weight of the cut.

Remark 4 No approximation algorithm achieving better than γ is currently known.

Remark 5 Approximating MAXCUT within 16/17 (≈ .94117) +ε for any ε > 0 is NP-hard[3].
Approximating MAXCUT within γ + ε for any ε > 0 is UGC-hard; that is, an efficient algorithm
doing such would imply the falsity of the Unique Games Conjecture.

Remark 6 It can be shown that the SDP relaxation above always has an optimal solution in dimen­

sion r where r(r
2
+1 ≤ n (i.e. r ≤ 2

√
n).

19-3

�

4 SPARSEST-CUT and Multicommodity-Cut

We now consider the problem of identifying a sparse cut in a graph: one which is as small as possible,
relative to the number of edges which could exist between the sets of vertices. The latter quantity
is maximized by balancing the vertices across the partition. Hence, we seek S ⊂ V minimizing
w(S : S̄)/|S × S̄|. A generalization of SPARSEST-CUT is the multicommodity cut problem, in
which we have, in addition to a capacitated G = (V, E), some k commodities, each associated with
a “demand” fi and a source and sink si, ti V . (The idea is that we want to ship units of ∈ fi

commodity i from si to ti.) We seek the value of a cut (S : S̄) with minimum capacity relative to
the demand across it, i.e.,

u(S : S̄)
min � .
S:S̄ [i:(si ,ti)∈(S:S̄) fi]

We will write β for the objective in this expression, and denote its optimum by β∗ .
We recover SPARSEST-CUT by taking u = w and creating a commodity of demand 1 for each

pair of vertices. As another special case, when k = 1, we are minimizing u(S : S̄) over cuts separating
s and t, so we have the min s–t cut problem (in an undirected graph).

4.1 Concurrent multicommodity flow

Let us now discuss a problem which is in a sense dual to the multicommodity cut. In concurrent
multicommodity flow, we are given G = (V, E) with k commodities and capacity constraints on each
edge ∈ E, and seek the maximum α such that we can send αfi units of flow across the graph from si

to ti for all i simultaneously, without violating the capacity constraints on each edge. Let α∗ denote
the optimal value. It is easy to see how to do multicommodity flow by linear programming.

The multicommodity cut and flow problems are related by α∗ ≤ β∗ . Indeed, if we can send αfi

from si to ti for all i, u(S : S̄) must be at least αfi for each (si, ti) in the cut, so

u(S : S̄)
β = �

[i:(si,ti)∈(S:S̄) fi]
≥ α

for all feasible β and α. This is a “weak duality”-type condition.
If k = 1, we have equality, by the max s − t flow min s − t cut theorem (one can show that the

theorem for directed graphs implies it also for undirected graphs). It is non-obvious that we have
α∗ = β∗ for k = 2 as well. In general, however, we do not have equality. In figure 2, we show an
example of a graph with a relatively small number of commodities (4) for which α∗ is strictly less
than β∗ .

In this graph, all capacities have value = 1. For this graph, β∗ = 1. Consider the multicommodity
cut given by the dashed line. For this cut, and any similar cuts, the sum of the capacities across the
cut is u(S : S̄) = 3 and the amount of demand that needs to go through it is i:(si,ti)∈(S:S̄) fi = 3
also. If we choose a cut for which the capacties sum to 2 instead, the sum of the demands will also
be 2. Therefore, β∗ = 1.

What is α∗ though? There are k = 4 commodities in this graph, and yet a maximum of 3 units
of flow can be pushed across a cut at one time. Since s2 and t2 are on the same side of the cut, you
might think that α∗ might be able to reach 1. However, since each si is at least two edges away
from its ti and there are 4 commodities, if α∗ = 1 then the sum of the flow on all the edges of the
graph would have to be (4)(2)(1) = 8. Yet there only 6 edges, each with capacity 1. This shows
that α∗ ≤ 3/4.

So what IS the relationship between α∗ and β∗ in general?

Theorem 2
β∗

= O(log k).
α∗

19-4

�
�

Figure 2: An Example Graph where α∗ < β∗ .

Remark 7 Computing β∗ is NP-hard. However—as we will see in the upcoming lecture — we can
get a O(log k) approximation using the LP we have for α∗, and a tighter O(

√
log k) approximation

using an SDP.

To prove the above result, we introduce metric spaces.

5 Finite Metric Spaces

Definition 1 Let X be an arbitrary set, and d a function X R. (X, d) is a metric space if × X →
the following properties hold for all x, y, z ∈ X:

1. d(x, y) ≥ 0 (Nonnegativity)

2. d(x, y) = d(y, x) (Reflexivity)

3. d(x, y) + d(y, z) ≥ d(x, z) (Triangle Inequality)

For simplicity, we will deal only with finite metric spaces (i.e. X is finite). | |

Definition 2 Let X, Y be sets with associated metrics d, ℓ. For c ≥ 1, we say that (X, d) embeds
into (Y, ℓ) with distortion c if there is a mapping φ : X Y such that for any x, y ∈ X, d(x, y) ≤→
ℓ(φ(x), φ(y)) ≤ cd(x, y). If c = 1, the embedding is called isometric.

This distortion measure is useful when we can transform a problem defined on one metric into
another metric that is easier to deal with. This is precisely what we will do in the context of
multicommodity cuts and flows.

The most familiar metric spaces are n-dimensional Euclidean spaces, where d(x, y) := ‖x−y‖2 =
(xi − yi)2 . Generalizing gives the family of ℓn spaces, where we work over the set Rn and i p

d(x, y) := ‖x − y‖p = (
�

i |xi − yi|p)1/p. One can show that in the limit as p → ∞, this expression
tends to maxi | |. This space is denoted ℓn

ℓn
xi − yi ∞.

Suppose (X, d) is isometrically embeddable into ℓ1 (that is, 1 for some n). Is d isometrically
embeddable into ℓ2 as well? Not necessarily. Here we claim that ℓ2-embeddable metrics are only a
subset of ℓ1-embeddable metrics, which in turn are a subset of ℓ∞ metrics. In fact, we put forth the
following lemma:

19-5

�

�

6

|V |
Lemma 3 Any finite metric space (V, d) is isometrically embeddable in ℓ∞ .

Proof: For notational purposes, let V = {1, 2, . . . , n}. The mapping φ : V R
|V | is given by
→

φ(v) = (d(1, v), d(2, v), . . . , d(n, v)).

Using properties of metrics, we have

d(u, v) = = |d(u, u) − d(u, v)|
≤ max d(i, u) − d(i, v)

i∈V
| |

= ‖φ(u) − φ(v)‖∞

= ℓ∞(φ(u), φ(v)).

On the other hand, the triangle inequality gives

(φ(u) − φ(v))i = d(i, u) − d(i, v) ≤ d(u, v)

(φ(v) − φ(u))i = d(i, v) − d(i, u) ≤ d(u, v)

for all i, so ℓ∞(φ(u), φ(v)) = maxi∈V |(φ(u) − φ(v))i| ≤ d(u, v).
�

Remark 8 The ℓ2-embeddable finite metrics are ℓ1-embeddable.

The proof for this will be revisited in the next lecture. For now we return to the Multicommodity-Cut
problem, and how metrics can help us get an approximation algorithm for it.

Back to multicommodity cut

In the notation of metric spaces, we have the following. (“M ≤ M ′ ” means “M is isometrically
embeddable in M ′ ”)

Theorem 4

e=(i,j)∈E u(e)ℓ(i, j)
α ∗ = min

ℓ : (V,ℓ)≤ℓ∞
�k

fiℓ(si, ti)i=1

e=(i,j)∈E u(e)ℓ(i, j)
β ∗ = min

�kℓ : (V,ℓ)≤ℓ1 fiℓ(si, ti)i=1

(Note that the only difference between these two expressions is the class of metrics in which we permit
(V, ℓ) to reside. Thus, since α∗ minimizes over a larger space, we have α∗ ≤ β∗ immediately—as we
expect.) In the following lecture, we show an algorithm to compute β∗ approximately, making use
of the above.

References

[1] M.X. Goemans and D.P. Williamson, Improved Approximation Algorithms for Maximum Cut
and Satisfiability Problems Using Semidefinite Programming, J. ACM, 42, 1115–1145, 1995.

[2] U. Feige and G. Schechtman, On the optimality of the random hyperplane rounding technique
for MAX CUT, Algorithms, 2000.

[3] J. H̊astad, Some optimal inapproximability results, J. ACM, 48, 798–869, 2001.

19-6

