
MIT OpenCourseWare
http://ocw.mit.edu

6.854J / 18.415J Advanced Algorithms
Fall 2008��

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

� �

18.415/6.854 Advanced Algorithms November 19, 2008

Approximaion Algorithms: MAXCUT
Lecturer: Michel X. Goemans

1 MAX-CUT problem

MAX-CUT Problem: Given a graph G = (V,E) and weights on the edges w : E R+, find a
cut (S : S̄), S ⊆ V that maximizes w(S : S̄) =

�
S) w(e).

→

e∈(S: ¯

MIN-CUT Problem: find a cut (S : S̄) that minimizes w(S : S̄).

There is a polynomial algorithm for the MIN-CUT problem: use the min s − t cut algorithm
on each pair of vertices (or, better, for a fixed s), and take the smallest of them. However, the
MAX-CUT problem is NP-hard, and we’ll try several ways of designing approximation algorithms
for it.

2 Idea #1: Local Search

Algorithm: Start from any cut (S : S̄). Define the neighborhood N(S : S̄) of the cut to be the
MOVE neighborhood: all the cuts that result from moving one vertex from one side of the cut to
the other side. Consider a locally maximum cut for this neighborhood.

1Lemma 1 If (S : S̄) is a local maximum for the MOVE neighborhood, then w(S : S̄) ≥ 2 w(E) ≥
1 OPT .2

Proof of lemma 1: Look at a vertex i ∈ V . Let Ci be the set of all edges (i, j) ∈ E that are
part of the cut (S : S̄) (that is if i ∈ S then j ∈ S ̄ and vice versa). Let Ai be the set of all edges
(i, j) ∈ E that are not part of the cut (S : S̄). Since moving any single vertex i to the other side of
the cut does not improve the weight of the cut, we know that:

w(Ci) ≥ w(Ai).

Summing over all vertices i, we get:

w(Ci) ≥ w(Ai),
i∈V i∈V

or 2w(S : S̄) ≥ 2w(E\(S : S̄)). Rearranging, we get:

4w(S : S̄) ≥ 2w(E)

or
w(S : ¯ S) ≥

1
2
w(E) ≥

1
2
OP T.

�

Remarks:

(a) The bound of 1/2 cannot be improved for this MOVE neighborhood: Consider a k-vertex
cycle, where k is a multiple of 4, as the graph G (with unit weights). The best cut will include

Lec18-1

3

all edges. However, if we start from a cut in which the edges of the cycle alternate in and out
of the cut, we have a locally optimum solution with only k/2 edges in the cut.

(b) The local search algorithm based on the MOVE neighborhood for MAX-CUT takes expo­
nentially many steps in the worst-case. This is true even for graphs that are 4-regular (each
vertex has exactly 4 neighbors) (Haken and Luby [1]). For 3-regular graphs the algorithm is
polynomial (Poljak [4]).

(c) To capture the complexity of local search, Johnson, Papadimitriou and Yannakakis [3] have
defined the class PLS (Polynomial Local Search). Members of this class are optimization
problems of the form max{f(x) : x ∈ S} together with a neighborhood N : S 2S . We say →
that v ∈ S is a local optimum if c(v) = max{c(x) : x ∈ N(v)}. To be in PLS, we need to
have polynomial-time algorithms for (i) finding a feasible solution, (ii) deciding if a solution is
feasible and if so computing its cost, and (iii) deciding if a better solution in the neighborhood
N(v) of a solution v exists and if so finding one. They introduce a notion of reduction, and
this leads to PLS-complete problems for which any problem in PLS can be reduced to it. Their
notion of reduction implies that if, for one PLS-complete problem, one has a polynomial-time
algorithm for finding a local optimum then the same true for all PLS problems. In particular,
MAX-CUT with the MOVE neighborhood is PLS-complete [5]. Furthermore, it follows from
Johnson et al. [3] that the obvious local search algorithm is not an efficient way of finding
a local optimum for a PLS-complete problem; indeed, for any PLS-complete problem, there
exist instances for which the local search algorithm of repeatedly finding an improved solution
takes exponential time. The result of Haken and Luby above is thus just a special case. Still,
this does not preclude other ways of finding a local optimum.

Idea #2: Random Cut

Algorithm: There are 2|V | possible cuts. Sample a cut randomly using a uniform distribution over
all possible cuts in the graph: ∀v ∈ V, Pr(v ∈ S) = 1 , independently for all vertices v ∈ V .2

Lemma 2 This randomized algorithm gives a cut with expected weight that is ≥ 1 OPT .2

Proof of lemma 2:

E[w(S : ¯ S)] = E[
�

w(e)I(e ∈ (S : ¯ S))] =
�

w(e) · P r(e ∈ (S : ¯ S))

=

e∈E �
w(e) · 1

2
=

1
2
w(E).

e∈E

e∈E

�
Using the method of conditional expectations, we can transform this randomized algorithm into

a deterministic algorithm. The basic idea is to use the following identity for a random variable f
and event A:

E[f] = E[f A]Pr(A) + E[f Ā]Pr(Ā) = E[f |A]Pr(A) + E[f |Ā](1 − Pr(A))
≤ max

|
{E[f |A], E[f |Ā]

|
}.

In our setting, we consider the vertices in a specific order, say v1, v2, , and suppose we have · · ·
already decided/conditioned on the position (i.e. whether or not they are in S) of v1, , vi−1.· · ·
Now, condition on whether vi ∈ S. Letting f = w(S : S̄), we get:

E[f |{v1, · · · , vi−1} ∩ S = Ci−1]
≤ max(E[f |{v1, · · · , vi−1} ∩ S = Ci−1, vi ∈ S], E[f |{v1, · · · , vi−1} ∩ S = Ci−1, vi ∈/ S]).

Lec18-2

�

�

� �

4

Both terms in the max can be easily computed and we can decide to put vi on the side of the cut
which gives the maximum, i.e. we set Ci to be either Ci−1 or Ci−1 ∪ {vi} in such a way that:

E[f |{v1, · · · , vi−1} ∩ S = Ci−1 ≤ E[f |{v1, · · · , vi} ∩ S = Ci].

When we have processed all inequalities, we get a cut (Cn : C̄
n) such that

1
2
w(E) ≤ E[f] ≤ w(Cn : C̄

n),

and this provides a deterministic 0.5-approximation algorithm.
Examining this derandomized version more closely, we notice that we will place vi on the side

of the cut that maximizes the total weight between vi and the previous vertices {v1, v2, , vi−1}.· · ·
This is therefore a simple greedy algorithm.

Remarks:

(a) The performance guarantee of the randomized algorithm is no better than 0.5; just consider
the complete graph on n vertices with unit weights. Also, the performance guarantee of the
greedy algorithm is no better than 0.5 int he worst-case.

Idea #3: LP relaxation

Algorithm: Start from an integer-LP formulation of the problem:

Since we have a variable xe for each edge (if xe = 1 than e ∈ (S : S)), we need the second type of

max w(e)xe

e∈E

s.t. xe ∈ {0, 1} ∀e ∈ E � �

e∈F e∈C\F

xe + (1 − xe) ≤ |C| − 1

� �

∀cycle C ⊆ E ∀F ⊆ C, |F | odd

⇔
e∈F e∈C\F

xe − xe ≤ |F | − 1 ∀cycle C ⊆ E ∀F ⊆ C, |F | odd

¯

constraints to guarantee that S is a legal cut. The validity of these constraints comes from the fact
that any cycle and any cut must intersect in an even number of edges. even number of edges that
are in the cut.

Next, we relax this integer program into a LP:

max w(e)xe

e∈E

s.t. 0 ≤ xe ≤ 1 ∀e ∈ E

xe − xe ≤ |F | − 1 ∀cycle C ⊆ E ∀F ⊆ C, |F | odd.
e∈F e∈C\F

This isa relaxation of the maximum cut problem, and thus provides an upper bound on the value
of the optimum cut. We could try to solve this linear program and devise a scheme to “round” the
possibly fractional solution to a cut.

Remarks:

Lec18-3

�

5

(a) This LP can be solved in a polynomial time.	 One possibility is to use the ellipsoid algorithm
as the separation problem over these inequalities can be solved in polynomial time (this is not
trivial). Another possibility is to view the feasible region of the above linear program as the
projection of a polyhedral set Q ⊆ Rn 2

with O(n3) number of constraints; again, this is not
obvious.

(b) If the graph	 G is planar, then all extreme points of this linear program are integral and
correspond to cuts. We can therefore find the maximum cut in a planar graph in polynomial
time (there is also a simpler algorithm working on the planar dual of the graph).

(c) There exist instances for which OPT ∼ 1 (or ∃G = (V,E), w(e) = 1, OPT ≤ n(1 + �), LP ≥LP 2	 2
n(1 − �)), which means that any rounding algorithm we could come up with will not guarantee
a factor better than 1 .2

Idea #4: SDP relaxation

The idea is to use semidefinite programming to get a more useful relaxation of the maximum cut
problem. This is due to Goemans and Williamson [2].

Instead of defining variables on the edges as we did in the previous section, let’s use variables on
the vertices to denote which side of the cut a given vertex is. This leads to the following quadratic
integer formulation of the maximum cut problem:

max
�

w(i, j)
1 − yiyj

2
(i,j)∈E

s.t. yi ∈ {1, −1}n ∀i ∈ V.

Here we have defined a variable yi for each vertex i ∈ V such that yi = 1 if i ∈ S and yi = −1
otherwise. We know that an edge (i, j) is in the cut (S : S̄) iff yiyj = −1, and this explains the
quadratic term in the objective function.

We can rewrite the objective function in a slightly more convenient way using the Laplacian of
the graph. The Laplacian matrix L is defined as follows: ⎧ ⎪0 (i, j) /⎨ ∈ E

lij = −w(i, j) i = j, (i, j) ∈ E ⎪�
�⎩

=i w(i, k) i = j. k:k

that is, the off-diagonal elements are the minus the weights, and the diagonal elements correspond
to the sum of the weights incident to the corresponding vertex. Using the Laplacian matrix, we can
rewrite equivalently the objective function in the following way:

n� n� n� � �
y T Ly = yiyj lij = y 2

i w(i, k) − yiyj w(i, j)
i=1 j=1 i=1 k �=i ⎛

(i,j)∈E ⎞

= 2w(E) −
�

yiyj w(i, j) = 4 ⎝
�

w(i, j)
1 − yiyj

2
⎠ ,

(i,j)∈E (i,j)∈E

and thus �
w(i, j)

1 − yiyj

2
=

1
4
y T Ly.

(i,j)∈E

Lec18-4

Thus the maximum cut value is thus equal to

1
max{

4
y T LY : y ∈ {0, 1}n}.

If the optimization was over all y ∈ Rn with ||y||2 = n then we would get that 2

1	 n
max{

4
y T LY : y ∈ Rn , ||y||2 = n} =

4
λmax(L),

where λmax(L) is the maximum eigenvalue of the matrix L. This shows that OPT ≤ n λmax(L);4
this is an eigenvalue bound introduced by Delorme and Poljak.

Using semidefinite programming, we will get a slightly better bound. Using the Frobenius inner
product, we can again reformulate the objective function as:

1 1
y T Ly = L (yy T),

4 4
•

or as
1
L Y

4
•

if we define Y = yyT . Observe that Y � 0, Y has all 1’s on its diagonal, and its rank is equal to
1. It is easy to see that the coverse is also true: if Y � 0, rank(Y) = 1 and Yii = 1 for all i then
Y = yyT where y ∈ {−1, 1}n . Thus we can reformulate the problem as:

1
max L Y

4
•

s.t.	 rank(Y) = 1,

∀i ∈ V : Yii = 1,

Y � 0.

This is almost a semidefinite program except that the rank condition is not allowed. By removing
the condition that rank(Y) = 1, we relax the problem to a semidefinite program, and we get the
following SDP:

1
SDP = max L Y

4
•

s.t.	 ∀i ∈ V : Yii = 1,

Y � 0.

Obviously, by removing the condition that rank(Y) = 1 we only increase the space on which we
maximize, and therefore the value (simply denoted by SDP) to this semidefinite program is an
upper bound on the solution to the maximum cut problem.

We can use the algorithms we described earlier in the class to solve this semidefinite program
to an arbitrary precision. Either the ellipsoid algorithm, or the interior-point algorithms for conic
programming. Remember that semidefinite programs were better behaved if they satisfied a regular­
ity condition (e.g., they would satisfy strong duality). Our semidefinite programming relaxation of
MAXCUT is particularly simple and indeed satisfies both the primal and dual regularity conditions:

(a)	 Primal regularity conditions ∃Y � 0 s.t. Yii = 1 ∀i. This condition is obviously satisfied
(consider Y = I).

Lec18-5

�

�

(b) Dual regularity condition: First consider the dual problem ­

1
min

4
zi

i∈V

z1 0 ... 0
0 z2 ... 0
. . .

. . .
. . .

. . .
0 0 ... zn

⎛ ⎞ ⎜⎜⎜⎝

⎟⎟⎟⎠− L � 0,s.t.

where zi ∈ R for all i
z1 0 ... 0
0 z2 ... 0

⎞⎛ ∈ V . The regulation condition is that there exist zi’s such that

⎜⎜⎜⎝

⎟⎟⎟⎠− L � 0. This is for example satisfied if, for all i, zi > λmax(L)..
0 0 ... zn

Remark: If we add the condition that z1 = z2 = ... = zn to the dual then the smallest value zi

can take is equal to λmax(L), and we derive that:

n
OPT ≤ SDP ≤

4
λmax(L),

and therefore this SDP bound improves upon the eigenvalue bound.
We will start the next lecture by proving the following theorem.

Theorem 3 ([2]) For all w ≥ 0, we have that OPT ≥ 0.87856.SDP

In order to prove this theorem, we will propose an algorithm which derives a cut from the solution
to the semidefinite program. To describe this algorithm, we first need some preliminaries. From the
Cholesky’s decomposition, we know that:

Y � 0 ⇔ ∃V ∈ Rk×n , k = rank(Y) ≤ n, s.t. Y = V T V

⇔ ∃v1, ..., vn s.t. Yij = v T vj , vi ∈ Rn .i

Therefore, we can rewrite the SDP as a ’vector program’:

max w(i, j)
1 − vi

T vj

2

To be continued...

s.t.

(i,j)∈E

∀i ∈ V :
∀i ∈ V :

�vi� = 1

vi ∈ Rn .

References

[1] A. Haken and M. Luby, “Steepest descent can take exponential time for symmetric connection
networks”, Complex Systems, 1988.

[2] M.X. Goemans and D.P. Williamson, Improved Approximation Algorithms for Maximum Cut
and Satisfiability Problems Using Semidefinite Programming, J. ACM, 42, 1115–1145, 1995.

[3] D.S. Johnson, C.H. Papadimitriou and M. Yannakakis, “How easy is local search”, Journal of
Computer and System Sciences, 37, 79–100, 1988.

Lec18-6

[4] S. Poljak, “Integer Linear Programs and Local Search for Max-Cut”, SIAM J. on Computing,
24, 1995, pp. 822-839.

[5] A.A. Schäffer and M. Yannakakis, “Simple local search problems that are hard to solve”, SIAM
Journal on Computing, 20, 56–87, 1991.

Lec18-7

