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1 Introduction

In this lecture, we continue our discussion of the interior-point algorithms for conic programming.
In our study of conic programming, we will focus primarily on the following two spaces of possible
solutions:

e Linear Programming: K = R,

e Semi-definite Programming: K =PSD,; that is, K is the cone of positive semi-definite matrices
(K={X: y*"Xy >0, Vy € R?,y # 0}).

We begin by revising the conic program for LP. Let K be a closed convex cone in R". Then, K*
is the polar cone of K, which is defined as K* = {s: (z,s) >0, Vx € K}.
The primal program for conic programming is

min (¢, z) s.t. Az =,
z € K.

The dual program for conic programming is

max (b,y) s.t. A'y+s=c,
se K*,

where A* is the adjoint matrix of A. This generalizes both LP and SDP.

2 Barrier Functions

In the last lecture, we introduced barrier functions, which are useful in computing the optimal of
the conic programs.

Definition 1 A function F : int(K) — R is a barrier function, if
1. F is strictly convex, and
2. (xp > 2 €0k as k — 00) = (F(xr) — 00 as k — 0).
The last property indicates that I’ approaches infinity as x; moves closer to the boundary of K.

To compute the optimal of the conic programs, we first define the barrier primal (BP,) and the
barrier dual (BD,) programs.

BP, : min (¢, z) + puF'(z) s.t. Az =10,
(z € int(K)).
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Figure 1: The central path from p = oo to u = 0, the optimal solution, in the primal and dual space.

As we will start from an interior point, the condition z € int(K) will remain true because F' becomes
infinite closer to the boundary of K according to the definition of the barrier function (1).

BD,, : max (b,y) — uFi(s) s.t. A"y + s =c,
(s € int(K™)),
where F, is a barrier function on K*.

For the special cases of LP and SDP, we introduce two barrier functions, also known as canonical
barrier functions, which will help us find an optimal for the initial conic programs efficiently.

For K=R': F(X)=- 27:1 In(x;) (1)
For K =PSD, : F(X)=—In(det(X)), (2)
and similarly for F.

These functions are in fact very similar. In relation (2), X is a symmetric matrix, so det(X) is
the product of its eigenvalues, say A;. Thus, F'(X) = —3_,In(A;) which is similar to the expression
in relation (1).

Consider the set of optimal solutions as ¢ — 0. Note that when p = 0, the barrier programs
become the initial conic programs and thus their optimal solutions are optimal solutions for the
initial programs as well. The set of solutions as u — 0 represents a path, called the central path.
The path starts at u = co and we show in the next section that as p tends to 0, it converges to an
optimal solution as illustrated in Figure 1.

3 Optimality Conditions

In this section we show a strong duality relation between the unique optimum solution to (BP,)
and the unique optimum solution to (BD,). We focus on LP and SDP.

Claim 1 If x is optimum in BP, for K =R} (LP), then there exists y and s such that:
1. A*y+s=c,
2. s—px~t=0.
Proof: The gradient of F at an optimum has to be normal to the region of feasible solutions

because otherwise we would be able to improve on the optimum. Therefore, we have

Jy, c+uVF(z) =A%y (3)
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Let us define
s = —uVF(z). (4)

By substituting for s in (3), we obtain ¢ — s = A*y which proves the first relation.
Next, let us prove the second relation. We substiture F'(z) according to its definition (1) in (4)
and obtain

1
sj—p—=0,7=1...n
Lj
and thus
§=pa (5)

which proves the second relation. Note that since both  and p are positive, it follows that s € K*.
O

Claim 2 If X is optimum in BP,, for K =PSD,, (SDP) then there exists y € R™ and S € PSD,,:
1. A*y+S=2C,
2. S—uX"t=0.

Here A*y = )", y;A; as we established last lecture.
Proof: Similarly to the proof of Claim 1, the gradient of F' at X has to be normal on the region
of feasible solutions because otherwise X would not be optimal. Therefore,

Jy, c+pVF(X) = A"y, (6)

where A* is the adjoint. We claim that
VE(X)=-X"% (7
Let us show this if X was not necessarily symmetric; our derivation thus will not be fully correct.

Observe that
OF (X) 1 O0detX Gy

81'1']' o _detX 811] B _detX’

where Cj; is the cofactor matrix of element (¢,7). The last equality follows (for not necessarily
symmetric matrices) from the fact that, for any ¢,

det X = Z :I:i]Cij.
J

(For symmetric matrices C;; depends on z;; = x;;.) We can thus deduce our claim (7).
By substituting this relation in (6), we have

c—puX"t=A*y.

By substituting S = uX ! in this relation we obtain the desired relations. Furthermore, note that
S e K* (i.e. S=0) because X is positive definite and p is positive. O

Note that the dual of the above claims are similar. That is, if y, s are optimal for BD,,, we have
Jz,st. Az =band x + uVF,(s) = 0. For LP, we would have x — us~! = 0 and thus xs = p and
for SDP, X — uS~! =0 and thus XS = ul.
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4 Duality Gap

Recall that the duality gap between a primal feasible solution x and a dual feasible solution (y, s)
is defined as the difference between their values. Furthermore, this expression simplifies to (s, )
for conic programs. Let z(u) denote the (unique) optimum solution to BP, and (y(u),s(n)) the
(unique) optimum solution to BD,,. Since they are feasible for the original primal and dual conic
programs, we have that the duality gap is (z(u), s()). This gives us an indication of how far we
are from optimal. We will show now that this duality gap converges to 0 as u tends to 0, and thus
the central path converges to an optimum solution.

In the previous section, we found that optimality of the primal implies s = uz~!. For LP, the
duality gap will be

(@), () = 35 () - s (1) = .

Therefore, as u — 0, (z(u), s(p)) — 0.
For SDP, we have

(X(n), S(p)) = X(p) @ S(p) = Tr(X(p) - S(p)) = Tr(ulp) = pp,

where I, is the identity matrix of dimension of dimension p. Thus, as p — 0, (X (u), S(p)) — 0.

5 Barrier Function Properties

Both canonical barrier functions we introduced, (1) and (2), are self-concordant. Let us mention the
definition of self-concordance, but we shall not elaborate further on this property.

Definition 2 Let @ C R"™ be an open convex set. Function F : Q — R™ is a self-concordant barrier
function if it is at least three times differentiable, convez, and satisfies the properties:

1. |D*F(z)[h, h, h]| < 2(D*F(z)[h, h])%/2,
2. |DF(z)[h]|? < 9D2F(x)[h, h], and
3. F(z) — o0 as z — 0Q.

Here D¥F(x)[h,...,h] is the k-th directional of F at z along the direction h € R", and the
constant ¢ is called the parameter of the barrier function. The parameter 9 determines the speed
of the underlying interior point method.

Definition 3 A function is v-logarithmically homogenous if Vx,V7 > 0, F(tx) = F(z) — vIn(7).

Remark 1 The canonical barrier functions defined in (1) and (2) are v-logarithmically homogenous.

Proof: TFirst, let us consider the case when K = RY}.
F(rz) = - Zln(ij)
j=1

= —nln(r) — Zln(xj)
j=1
= —nln(7) + F(x)

which proves the remark for v = n.
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Let us consider next K =PSD,. We have

F(rX) = —In(det(7X))
= —In(7Pdet(X))
= —pln(7) — In(det(X))
= —pln(7) + F(X)

which proves the remark for v = p. (Il

6 Interior-Point Algorithms

We begin with an overview of the algorithm.

1. Start with point x( for the primal and points yg, so for the dual and a value for p of pg. These
points should be close to the points on the central path: z(pg) for the primal and s(uo), y(po)
for the dual for some definition of closeness that we will introduce.

2. At every step k, decrease p and compute new points T, yg, Sk close to the points x(u) for
the primal and s(ug), y(ux) for the dual that are located on the central path.

3. As p — 0, the solutions converge to the optimal solution.

We need to define a notion of distance and closeness to the central path.

7 Distance to Central Path

To define what we mean by being “close” to the central path, we need a distance function parametrized
by p that measures how close x is to s. This distance d,(z,s) should be equal for the primal and
for the dual, and furthermore it should be obviously zero if we are on the central path:

du(z,s) =0if s+ uVF(z) =0.

Similar conditions must hold for the dual as well, hence d,(x,s) = 0 if z + pVF,(s) = 0. Notice
that at least for the canonical barrier functions these two conditions are equivalent and hence being
on the dual central path implies being on the primal central path and viceversa.

To simplify the calculations we can scale these vectors by %, thus we have that d,(z,s) = 0 if
2+ VF(z) =0 <= £+ VFE(s) =0.

Finally we define the distance function as the norm of these vectors, and since we are free to
choose what norm to use we define a norm respect to x and a norm with respect to s, such that:

d,(z,5) = HZ + VF(z)

T
=||—+ VF.(s
FRAEC

x

The norm ||al|, is defined as ||a||, = /((V2F (b)) 'a,a) where V2F(b) represents the Hessian

matrix.

S

7.1 Distance Function for LP

To compute the Hessian matrix for LP, we plug in the expression for F(z) defined in (1).

1

1
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Hence the matrix of second derivatives is,

= 0

1
V2F(z) = : oo
0 - ;2

Finally since the Hessian matrix is a diagonal matrix we can calculate its inverse by taking the
inverse of each element in its diagonal,

2

22 .0
(V2F(@))" = z
0 x2
b% o0
Therefore |jall, = |aT | ¢ -..  |a. We can now evaluate this norm on the vector o+ x!
0 b2
to obtain
o (a2 -G
p . ’ B —\

The same computation can be performed for the dual, which will result in a similar expression.

7.2 Distance Function for SDP
Similarly, for SDP we have

Letays ) s S
=\|Tr(—-Xz25X2 —1) =|Tr|-Sz2XS2—-1) =|-5—-X
w K Iz H

Here, the the last equality holds since Tr(AB) = Tr(BA) even if A and B do not commute.

We can also write this expression in the more compact (but less symmetric) form , /TT'(%SX —1)2.

Hlx - st
o’

S

Finally, the following lemma concerning this metric has been proved (and we will not go over the
proof in this lecture).

Lemma 3 Ifd,(z,s) <1 then (z,s) < 2vpu.

The lemma suggests that if we keep a distance of at most 1 from the central path, as u — 0, the
duality gap will become 0 as well which means that we will reach the optimal solution.

8 Follow the Central Path

Suppose that at iteration k¥ we have some value pj and x, which is close to z(ug); we want to
compute prr1 < px and zg11, which should be close to z(pg41)-

More concretely at iteration k we have xy, Sk, Yk, i which are close to the central path, and we
want to obtain values xx41, Sk+1, Yk+1, Hk+1 Which are still close to the central path.

There are several schemes to achieve this goal; one way is to focus on the primal program and
on the conditions that we derived in Section 3:
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S

Ay =
A Y1 + Spp1 =c¢
Skt1 + prr1 VE(2gp11) =0

Since we do not know the value of zy11, we can use the Taylor expansion on VF(xp41):

VE(xp41) ~ VF(zp) + (tpg1 — 21)V2F (21)

Now we have a system of linear equations on zpy1. To solve the system, consider the following
definitions:

Azr = )4 — T (8)
Ay = Ykt1 — Yk 9)
AS = Sk11 — Sk (10)

One can prove that if at iteration k you are “close” to the central path (as defined by the distance
function) there is a way to decrease p by a constant fraction and still remain “close” to the central
path. This is formalized by the following theorem, which we will not prove in class.

Theorem 4 If d,, (x),s:) < 0.1 and

Mk
1+ 9L

Hk+1 =

<

then dy,+1(Tr41, Sk+1) < 0.1,

The method described so far is referred to as primal path following since we considered the
conditions of x(ug) as defined by the primal, but we could have done the same thing on the dual
which leads to a different set of linearized equations.

9 Number of Iterations

We require /v iterations to decrease u by a constant factor, and p is equal to the duality gap. There-
fore decreasing the duality gap to some constant ¢ starting from xq, yo, so requires O(1/v log @)
iterations.

It is interesting to observe that SDP with n? variables requires the same number of iterations
as LP with n variables. However the resulting system of linear equations that need to be solved per
iteration for SDP involves n? variables as opposed to n variables as in the case of LP.

10 How Do We Start?

Let us assume that we have a point x that is inside the primal and inside the dual, but it could be
very far away from the central path. This point is not suitable to start the algorithm since we need
to be close to the central path to be guaranteed to stay close to the central path.

However, there is a nice trick that works when the region is bounded; here we will sketch the
informal intuition behind it. Observe that as p — oo the position of the point x(u) does not depend
on the objective function. This means that the central paths of all objective functions can be traced
back to a common “origin”.
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Figure 2: Tracing back from a path that starts at z, jumping to the “correct central path and
starting the algorithm from there.

There is a continuum of central paths and it is easy to find the one that passes through x. Then
we can trace this path back towards p = oo until we are close enough to the desired central path.
Next, we can follow the desired central path described by the objective function of interest and start
the algorithm from there. Figure 2 illustrates this procedure.

For more information regarding interior-point methods for conic programming and its special
cases, the reader is referred to the references below.
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