
MIT OpenCourseWare
http://ocw.mit.edu 

6.854J / 18.415J Advanced Algorithms 
Fall 2008��

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


18.415/6.854 Advanced Algorithms October 27, 2008 

Lecture 14 
Lecturer: Michel X. Goemans 

1 Introduction 

For this lecture we’ll look at using interior point algorithms for solving linear programs, and more 
generally convex programs . Developing originally in 1984 by Narendra Karmarkar, there have been 
many variants (with some of the keywords ’path following’, ’primal-dual’, ’potential reduction’, etc.) 
on interior point algorithms, especially through the late 80s and early 90s. In the late 90s, people 
began to realize that interior point algorithms could also be used to solve semidefinite programs (or, 
even more generally, convex programs). As much as possible, we will discuss linear programming, 
semidefinite programming, and even a larger class called conic programming in a unified way. 

2 Linear Programming 

We will start with linear programming. Remember that in linear programming, we have: 
Primal: Given A ∈ Rm×n , c ∈ Rn and b ∈ Rm, find x ∈ Rn: 

Min c T x 

s.t. Ax = b, x ≥ 0. 

Its dual linear program is: 
Dual: Find y ∈ Rm: 

Max bT y 

s.t. AT y ≤ c. 

We can introduce non-negative slack variables and rewrite this as: 
Dual: Find y ∈ Rm , s ∈ Rn: 

Max bT y 

s.t. AT y + s = c, s ≥ 0. 

We know that, for a feasible solution, x in the primal, and a feasible solution (y, s) in the dual, 
we know by complementary slackness that they will both be optimal (for the primal and the dual 
resp.) iff xT s = 0. Since this is the component-wise product of two non-negative vectors, we can 
equivalently say: 

xj sj = 0 ∀j. 

2.1 Using the Interior Point Algorithm 

The interior point algorithm will iteratively maintain a strictly feasible solution in the primal, such 
that for all values of j, xj > 0. Similarly in the dual, it will maintain a y and an s such that 
for all values of j, sj > 0. Because of this strict inequality, we can never reach our optimality 

14-1 



� � 

� 

condition stated above; however, we’ll get very close, and once we do, we can show that a jump 
from this non-optimal solution (for either the primal or the dual) to a vertex of improved cost (of 
the corresponding program) will provide an optimal solution to the (primal or dual) program. 

In some linear programs, it may not be possible to start with a strictly positive solution. For 
example, for any feasible solution to the program, it may be that xj = 0, so we may be unable to 
find a strictly feasible solution with which to start the algorithm. This can be dealt with easily, but 
we will not discuss this. We’ll assume that the primal and dual both have strictly feasible solutions. 

3 Semidefinite Programming 

As introduced in the previous lecture, in semidefinite programming, our variables are the entries of 
a symmetric postitive semidefinite matrix X. Let Sn denote the set of all real, symmetric and n × n 
matrices. For two such matrices A and B, we define an inner product 

A B = Aij Bij = Trace(AT B) = Trace(AB).• 
i j 

Semidefinite programming (as a minimization problem) is 

Min	 C • X 

s.t. Ai • X = bi i = 1...m 

X � 0. 

Remember that for a symmetric matrix M , M � 0 means that M is positive semidefinite, meaning 
that all of its (real) eigenvalues λ ≥ 0, or equivalently, ∀x, xT Mx ≥ 0. 

3.1 Dual for SDP 

When working with linear programs, we know the existence of a dual linear program with a strong 
property: Any feasible dual solution provides a lower bound on the optimum primal value and, if 
either program is feasible, the optimum primal and optimum dual values are equal. Does a similar 
dual for a semidefinite progrm exist? The answer if yes, although we will need some additional 
condition. We claim that the dual takes the following form. 

Dual: Find yi ∈ Rn, and S ∈ Sn: 

Maxy∈Rm bT y 

s.t.	 yiAi + S = C 
i 

S � 0. 

14-2 



3.1.1 Weak Duality 

For weak duality, consider any feasible solution x in the primal, and any feasible solution (y, S) in 
the dual. We have: � � � 

C • X = yiAi + S • X 
i � 

= yi(Ai • X) + S • X 
i � 

= yibi + S • X 
i 

= bT y + S • X 

≥ bT y, 

the last inequality following from Lemma 1 below. This is true for any primal and dual feasible 
solutions, and therefore we have z ≥ w, where: 

z = min{C X : X feasible for primal},• 

w = max{bT y : (y, S) feasible for dual}. 

Lemma 1 For any A,B � 0, we have A B ≥ 0.• 

Proof of Lemma 1: Any positive semidefinite matrix A admits a Cholesvky decomposition: 
A = V T V for some n × n matrix V . Thus, 

A • B = Trace(AB) = Trace(V T V B) = Trace(V BV T ), 

the last inequality following from the fact that, for (not necessarily symmetric) square matrices C 
and D, we have Trace(CD) = Trace(DC). But V BV T is positive definite (since xT V BV T x ≥ 0 
for all x), and thus its trace is nonnegative, proving the result. � 

A similar lemma was used when we were talking about linear programming, namely that if 
a, b ∈ Rn with a, b ≥ 0 then aT b ≥ 0. 

3.1.2 Strong Duality 

In general, it’s not true that z = w. Several things can go wrong. 
In defining z, we wrote: z = min C • X. However, that min is not really a min, but rather 

an infimum. It might happen that the infimum value can be approached arbitrarily closely but no 
solution may attain that value precisely. Similarly in the dual, the supremum may not be attained. 

In addition, in semidefinite programming, it is possible that the primal may have a finite value, 
but that the dual may be infeasible. In linear programming, this was not the case. If the primal 
had a finite feasible value and was bounded, the dual was also finite and with the same value. In 
semidefinite programming, the primal can be finite, while the dual may be infeasible or vice versa. 

In addition, both the primal and dual could be finite, but they could be of differing values. 
That all said, in the typical case, you do have strong duality (z = w), but only necessarily under 

certain conditions. 

3.1.3 Introducing a Regularity Condition 

Assume that the primal and dual have a strictly feasible solution. This means that for the primal: 

∃X s.t.	 Ai • X = bi i = (1...m). 
X � 0. 

14-3 



� 

’A � 0’ denotes that A is a positive-definite matrix, meaning that ∀a = 0� , aT Xa > 0, or equivalently 
that all its eigenvalues λi satisfy λi > 0. 

Likewise, in the dual, there exists y and S such that: 

i yiAi + S = C 

S � 0. 

If we assume this ’regularity condition’ that we’ve defined above, then the primal value z is finite 
and attainable (i.e. it is not an infimum, but actually a minimum), and the dual value w is attained 
and furthermore z = w. This is given without proof. 

4 Conic Programming 

Conic Programming is a generalization of both Linear Programming and Semidefinite Programming. 
First, we need the definition of a cone: 

Definition 1 A cone is a subset C of Rn that has the property that for any v ∈ C and λ ∈ R+ , λv 
is also in C. 

Conic Programming is constrained optimization over K, a closed convex cone, with a given inner 
product �x, y�. We can, for example, take K = Rn and �x, y� = xT y for any x, y ∈ Rn; this will lead 
to linear programming. Conic programming, like LP and SDP, has both a primal and a dual form; 
the primal is: 

Primal: Given A ∈ Rm×n, b ∈ Rm, and c ∈ Rn: 

min	 �c, x� 
s.t.	 Ax = b 

x ∈ K. 

More generally, we could view K as a cone in any space, and then A is a linear operator from 
K to Rm . To form the dual of a conic program, we first need to find the polar cone, K∗, of K. The 
polar cone is defined to be the set of all s such that for all x in K, �s, x� ≥ 0. For instance, the polar 
cone of Rn is Rn itself (indeed if sj < 0 then we have s /∈ K∗ since �ej , s� < 0; conversely, if s ≥ 0+ + 
then �x, s� ≥ 0). In the case that K = K∗, we say that K is self-polar. Similarly, the polar cone of 
PSD, the set of positive semidefinite matrices, is also itself. 

We also define the adjoint (operator) A∗ of A to be such that, for all x and y, �A∗y, x� = �y, Ax�. 
For example, if the inner product is a standard dot product and A is the matrix corresponding to 
a linear transformation from Rn to Rm, then A∗ = AT . To write the conic dual, we introduce a 
variable y ∈ Rm and s ∈ Rn and optimize: 

Dual: 

max �b, y� 
s.t. A∗y + s = c 

s ∈ K∗. 

4.0.4	 Weak Duality 

We can prove weak duality – that the value of the primal is at least the value of the dual – as follows. 
Let x be any primal feasible solution and (y, s) be any dual feasible solution. Then 

�c, x� = �A∗y + s, x� = �A∗y, x� + �s, x� = �y, Ax� + �s, x� = �b, y� + �s, x� ≥ �b, y�, 

where we have used the definition of K∗ to show that �s, x� ≥ 0. This means that z, the infimum 
value of the primal, is at least the supremum value w of the dual. 

14-4 



� � � � 

� � 

� 

�

4.0.5 Strong Duality 

In the general case, we don’t know that the two values will be equal. But we have the following 
statement (analogous to the regularity condition for SDP): if there exists an x in the interior of K, 
such that Ax = b, and a s in the interior of K∗, with A∗y + s = c, then the primal and the dual 
both obtain their optimal values, and those values are equal. 

4.1 Semidefinite Programming as a Special Case of Conic Programming 

LP is a special case of conic programming, if we let K = Rn and take the inner product to be the + 
standard dot product �a, b� = aTb. We can also make any SDP into a conic program; first, we need 
a way of transforming semidefinite matrices into vectors. Since we are optimizing over symmetric 
matrices, we introduce a map svec(M) that only takes the lower triangle of the matrix (including 
the diagonal). To be able to use the standard dot product with these vectors, svec multiplies all of 
the off-diagonal matrices by 

√
2. So svec maps X to 

(x11, x22, . . . , xnn, 
√

2x12

√
2x13, . . . , 

√
2x(n−1)n). 

As a result: 
n

�svec(X), svec(Y )� = 
� 

xiiyii + 
� √

2xij 

√
2yij = 

� 
xij yij = Tr(AB) = A B. • 

i=1 1≤i<j≤n 1≤i,j≤n 

This means that using the basic dot product as the inner product is compatible with the inner product 
used in SDP. So we can formulate an SDP as a conic program by letting K = {svec(X) : X � 0}, 
which is a closed convex cone. To show convexity, we need to show that if A and B are matrices in 
PSD, then λA + (1 − λ)B is also in PSD for 0 ≤ λ ≤ 1. Indeed, for any vector v, we have 

v T(λA + (1 − λ)B)v = λ v TAv + (1 − λ) v TBv ≥ 0. 

Then, we can let the matrix A be a matrix that is the composition of the corresponding Ai of 
the semidefinite program, so that 

A svec(X) = (Ai • X)i=1,...,m. 

Now that the semidefinite program is cast into a conic program, we could write the conic dual, and 
one could verify that what we get is precisely the dual of the semidefinite program we defined earlier. 

Instead of mapping the space of symmetric matrices (say p × p) into Rn (with n = p+1 ) using 2 
svec(·), one could simply define K = {X ∈ Sp : X � 0} and �X, Y � = X • Y . Now our linear 
operator A : Sn Rm then maps X into (Ai • X)i=1, ,m. Its adjoint A∗ : Rm Sn is defined by: → ··· → 

m

�A∗(y), X� := �y, A(X)� = yiAi • X, 
i=1 

mimplying that A∗ maps y to i=1 yiAi. The dual SDP now arises as the dual conic program. 

4.2 Barrier Functions 

To solve the conic program, we will require a barrier function F . This is a function from int(K), 
the interior of K, to R such that 

1. F is strictly convex, 

2. F (xi) →∞ as xi → x ∈ ∂K, where ∂K is the boundary of K. 

14-5 



� 

We will use the barrier function to “punish” candidate solutions that are close to the boundary 
of K, keeping the current point inside K. “Good” barrier functions, that result in a fast overall 
algorithm, have more properties that will be described in a later lecture. For K = R+

n , a good 
barrier function is � 

F (x) = − log(xi). 
i 

As any one of the coordinates approaches 0, the log approaches −∞, so the total function goes to 
∞. One can also check that this function is strictly convex. 

For K = svec(PSDp) or more simply K = PSDp (the set of symmetric p×p positive semidefinite 
matrices), the interior of K is the set of positive definite matrices, which all have strictly positive 
determinants. (This is because the determinant is equal to the product of the eigenvalues, which 
are all strictly positive for a positive definite matrix.) So we can use the following barrier function: 

F (X) = − log(det(X)). 

As X approaches the boundary of K, the determinant goes to zero, and F goes to infinity. One can 
also check that this function is strictly convex (its Hessian, the matrix of second derivatives, can be 
shown to be positive definite). 

4.3 A Primal-Dual Interior-Point Method 

Once we have a barrier function, we will set the objective function of the primal to �c, x� + µF (x), 
where µ is a parameter that we will adjust through the course of the algorithm. Assuming that we 
start with an initial candidate that belongs to int(K), we can ignore the constraint that x ∈ K, 
since that will be enforced through the barrier function, since there will be an infinite penalty for 
leaving K. Our primal barrier problem BP (µ) will be: 

min{�c, x� + µF (x) : Ax = b}. 

Analogously, for the dual, we change the objective function to �b, y� − µF ∗(s), where F ∗ is a 
barrier function for the dual; we can also eliminate the constraint that s ∈ K∗. Our dual barrier 
problem, BD(µ), is: 

max{�b, y� − µF ∗(s) : A∗y + s = c}. 
The basic method of the algorithm is to have a current value of µ, and keep track of the optimal 

solutions in the primal BP (µ) and dual BD(µ). As long as µ is not zero, there is a unique optimum 
solution for both, since the objective function is the sum of a linear function and a strictly-convex 
function, which results in a strictly-convex function. We will steadily decrease µ, and keep track of 
the optimal solutions as they change; the paths the optimum solutions trace out is called the central 
path (or central trajectory). We will show that the (primal and dual) central paths will converge to 
an optimum value of the primal and dual original programs. 

In the special case of linear programming, once we are sufficiently close, we can round the current 
solution to the nearest vertex to obtain an optimum solution. For semidefinite programming, though, 
we do not have such an algorithm to convert a solution for small enough µ to an optimum solution. 

Let’s characterize the optimum solution to BP (µ) and BD(µ). We derive now the so-called 
KKT optimality conditions. If there were no constraints in the conic program, then the minimum 
would be found when the gradient of the objective function is zero. If there are affine constraints 
like Ax = b, however, the minimum will occur when the gradient is normal to the affine space of 
feasible solutions. Otherwise, we could move along the projection of the gradient on the feasible 
space, and improve our objective function. 

For simplicity, let’s first look at the case when K = K∗ = R+
n , and the barrier function is F (x) = 

− log(xi). The objective function of the primal is �c, x� − µF (x), and the partial derivatives are i 

∂ µ
(�c, x� − µF (x)) = cj −

∂xj xj 

14-6 



so the gradient is c − µx−1, where x−1 denotes the vector {1/xi}. But since this gradient is normal 
to the constraint Ax, the gradient must be of the form ATy for some y. So if we let s = µx−1, then 
we know c − s is of the form ATy, or equivalently, 

AT y + s = c 

s = µx−1 . 

The last constraint is equivalent to 
xj sj = µ (1) 

for all j. 
Now, looking at the dual: the gradient with respect to y is b, which must be of the form Ax for 

some x. The gradient with respect to s is µs−1, which must equal the same x. This means that 

Ax = b 

s = µx−1 , 

and the last equality is again equivalent to (1). 
So if we denote by x(µ) the optimum solution to the primal BP (µ) and by (y(µ), s(µ)) the 

optimum solution to the dual BD(µ), one observes that each of them is a certificate of optimality 
for the other and furthermore: 

xj (µ)sj (µ) = µ. 

This means that the duality gap in the original primal/dual pair of linear programs is xT s = nµ 
and therefore the duality gap goes to 0 as µ goes to 0. Thus the central path (x(µ), y(µ), s(µ)) will 
converge to optimum solutions to both the primal and dual linear programs. 

14-7 


