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Lecture 12 - Ellipsoid algorithm 
Lecturer: Michel X. Goemans 

In this lecture we describe the ellipsoid algorithm and show how it can be applied to the linear 
programming problem. 

1 Ellipsoid algorithm 

1.1 Definitions 

An ellipsoid is denoted by 

E(a, A) = {x ∈ Rn : (x − a)T A−1(x − a) ≤ 1}, 

with center a ∈ Rn and A ∈ Rn×m that is positive definite. 
Recall that A is symmetric if A = AT . A matrix is positive definite if it is symmetric and ∀x 6= 0, 

we have xT Ax > 0. The inverse of a positive definite matrix is also positive definite. Symmetric 
matrices have only real eigenvalues, and positive definite matrices have only real positive eigenvalues. 

1.2 Problem statement 

Given P ⊆ Rn bounded, closed, convex, find x ∈ P or show that P = ∅. 

1.2.1 Assumption: Separation oracle 

The first issue is how the convex set P is given. We assume that we have a “separation oracle” for 
P which does the following. Given a, the oracle either 

1.	 affirms that a ∈ P , or 

2.	 outputs c ∈ Rn such that P ⊆ {x ∈ Rn : cT x < cT a}. 

Think of c as the normal vector of the plane separating a and P , pointing away from P . Such a 
hyperplane exists because P is convex and closed. 

An algorithm for our problem would be judged based on how many times it queries the oracle. 
We would like the number of queries to be polynomial in terms of the input data. 

1.2.2 Assumption: Outer ball and minimum volume 

As such, the problem is hopeless, since we do not know where to search for a point x ∈ P , and P 
may even contain just a single point x. So we make two further assumptions. They are 

•	 P ⊆ “big ball”, i.e. P ⊆ B(0, R), a ball with center 0 and radius R > 0. This tell us where 
out search can be confined. 

•	 If P 6= ∅, P has “sufficient” volume. Let’s say we are given r > 0 such that we are guaranteed 
that P contains some ball of radius r if P is non-empty. 

We consider the size of our input to be n + log R − log r. 
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1.3 Sketch of the algorithm 

Here is an outline of the ellipsoid algorithm: 

•	 Start with ellipsoid E0 = (a0, A0). 

•	 Maintain an ellipsoid Ek = (ak, Ak) ⊇ P . At iteration k, ask the oracle if ak belongs to P . 

–	 If answer is yes, then we are done. 

–	 If ak does not belong to P , then the oracle provides a ck such that P ⊆ {x ∈ Rn : cT x < 
c Tk ak}. Thus, the separating hyperplane slices Ek and P is on one side of this hyperplane. 
We then determine a smaller ellipsoid Ek+1 such that 

Ek+1 ⊇ Ek ∩ {x : c Tk x < cT
k ak}.	 (1) 

–	 (Refer to Fig. (1)). 

–	 Notice that Ek ⊇ P and we iterate on. If we can show that volume of Ek+1 decays 
exponentially, then in “few” iterations, we either find a point in P , or reach Vol(Ek+1) < 
Vol(B(0, r)) and conclude that P = ∅. 
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Figure 1: Diagram illustrating a single iteration of the ellipsoid algorithm. 

1.4 Bounding volume of ellipsoids 

Proposition 1 Given Ek = E(ak, Ak) and ck, we can find Ek+1 such that Eq. (1) is satisfied and 

Vol(Ek+1) 
� 

1 
� 

< exp − . 
Vol(Ek ) 2(n + 1) 

Let us first focus on the simple case in which our ellipsoid is the unit ball centered at the origin. 

Claim 2 Proposition 1 holds for the special case where Ek = E(0, I) and ck = −e1. 
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Proof: By symmetry, Ek+1 is an axis-aligned ellipsoid with center along the x1 axis. It has to 
contain all points with x1 = 0. See Fig. (2). Formally, we want Ek+1 ⊇ Ek ∩ {x : x1 ≥ 0}, and 
one can show that it is enough to guarantee that (i) e1 ∈ Ek+1 and (ii) for all x with ‖x‖ = 1 and 
x1 = 0, we have x ∈ Ek+1. 
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Figure 2: Diagram illustrating the case where Ek = E(0, I). 

We propose the following 
� � �2 � �2 n 

� 

n + 1 1 n 2 − 1 � 
2Ek+1 = x : x1 − + xi ≤ 1 

n n + 1 n2 
i=2 

� 
1 n2 � 

2 T 

�� 

= E e1, I − e1e1 . 
n + 1 n2 − 1 n + 1 

It is easy to verify that this ellipsoid satisfies the constraints above. Since the volume of an 
ellipsoid is proportional to the product of its axis lengths, we obtain: 

Vol(Ek+1) n n2 
n−1 

Vol(Ek )
= 

n + 1 
· ( 

n2 − 1
) 2 

1 1 n − 1 
< exp − exp 

n + 1 n2 − 1 2 

1 
= exp − ,

2(n + 1) 

where we have used the fact that 1 + x < ex whenever x =6 0 (for x = 0 we have equality). � 
Next, we do a slightly more general case. 

Claim 3 Proposition 1 holds when Ek = E(0, I), ck = d and ‖d‖ = 1. 

Proof: From the previous simple case, it is clear that the following Ek+1 works. 
� 

2 � �� 
1 n 2 

Ek+1 = E − d, I − ddT . 
n + 1 n2 − 1 n + 1 
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Proof of Proposition 1: 
In general, we can transform E(ak, Ak) to E(0, I) and map ck into some d. We can then find an 

′ellipsoid E as in the proof of Claims 2 and 3, and map it back to obtain Ek+1. Denote the linear 
transformation that maps E(ak, Ak) into E(0, I) as T . Here is a picture: 

T 
Ek → E(0, 1) 

↓ 
T −1 

′ Ek+1 ← E 

Recall that we have 
E(a, A) = {x : (x − a)T A−1(x − a) ≤ 1}. 

By Cholesky decomposition (since A is positive definite), we can write A = BT B for some matrix 
B. If we let y = (B−1)T (x − 1), then we have 

(x − a)T B−1(B−1)T (x − a) ≤ 1 

(⇔) y T y ≤ 1, 

so we have a unit ball in the y space. Thus, our linear transformation T and its inverse are: 

T (x) = y = (B−1)T (x − ak), 

T −1(y) = ak + BT y. 

We need an equivalent “half-space” constraint after applying T . From Eq. (1), 

T T ck x < ck ak 

c Tk (B
T y + ak) < cT

k ak 

ck
T BT y < 0. 

Hence, in the new space, the unit normal vector of the separating plane is 

Bck
d = � . 

ck
T BT Bck 

′From Claim 3, we can find an ellipsoid E in the y space. For convenience (and aesthetic pleasure), 
let b = BT d. 

′Apply T −1 to E to obtain 

Ek+1 = E(ak+1, Ak+1) 

1 1 
ak+1 = ak − BT d = ak − b 

n + 1 n + 1 
� 

2 � �� 
2 � � 

n 2 n 2 
Ak+1 = BT I − ddT B = Ak − bbT . 

n2 − 1 n + 1 n2 − 1 n + 1 

Since affine transformations preserve the ratios between volumes, we immediately have the desired 
bound. Here are the details. 

Vol(E(0, I)) = det((B−1)T )Vol(Ek) 

Vol(Ek+1) = det(BT )Vol(E ′ ). 

Rearranging, we have


V ol(Ek+1) V ol(E ′ ) 
� 

1 
�


= < exp − . 
V ol(Ek) V ol(E(0, I)) 2(n + 1) 
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1.5 Running time 

From Proposition 1, we know that Vol(Ek) < Vol(E0) exp − 2(n
k 
+1) . If P is nonempty, then the 

ellipsoid algorithm terminates in 

Vol(E0)
# iterations = O n log . 

Vol(P ) 

Vol(E0) �
R 

�n 
By our assumption on P containing a ball of radius r if non-empty, we have that Vol(P ) 

≤ 
r , 

and thus the number of iterations is 

# iterations = O 
� 
n 2(log R − log r)

� 
. 

If P is empty, by the same number of iterations, we are guaranteed of its emptyness. 
We conclude this section by noting a small subtlety. To compute d, we have to be able to find B 

such that A = BT B. Cholesky decomposition takes O(n3) and guarantees that numbers in B have 
size polynomially bounded by the size of numbers in A. But we have to take square roots (in the 
calculation of d), so we might have to deal with irrational numbers. As a result, we may have to do 
some rounding to make Ek+1 slightly bigger. We have to argue that the volume decrease factor is 

still reasonable, say exp − 3(n
1
+1) , but this detail shall be omitted. 

2 Applying ellipsoid algorithm to linear programming 

2.1 Linear programming problem 

In the linear programming problem, we are asked to find 

min{c T x : Ax = b, x ≥ 0} 

with inputs A, b, c. The size of the input, from last lecture, is 

L = m + n + log detmax + log bmax + log cmax. 

To apply the ellipsoid algorithm, we will need to 

1. Go from an optimization problem to a feasibility problem. 

2. Show that the initial convex set is bounded and argue about how big the bounding ellipsoid 
has to be. Argue about termination and provide an inner ball if P is nonempty. i.e. we want 
P to be full-dimensional. 

2.2 Optimization to feasibility 

We will convert the optimization problem to a feasibility problem as follows: 

1. Check feasibility of Ax = b, x ≥ 0. 

2. If answer is infeasible, we are done because LP is infeasible. 

3. Otherwise, check feasibility of dual. Dual is max{bT y : AT y ≤ c}. Check for feasibility of 
AT y ≤ c. 

•	 If dual is not feasible, we are done because LP is unbounded. 

•	 Otherwise, both primal and dual are feasible. Their solutions have to match by strong 
duality. Hence, we check for feasibility of Ax = b, x ≥ 0, AT y ≤ c, cT x = bT y to find a 
solution for both primal and dual. 
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2.3 Outer and inner cubes 

Here we describe how to go from a system of linear inequalities to an equivalent one (in terms of 
feasibility) which if non-empty is full-diemnsional and has enough volume. 

Proposition 4 Let P := {x : Ax ≤ b} and e be the vector of all ones. Assume that A has full 
column rank n1 . Then P is nonempty iff P ′ = {x : Ax ≤ b + 2

1 
L e, −2L ≤ xj ≤ 2L for all j} is 

nonempty. 

This proposition allows us to choose E0 to be a ball centered at the origin containing the cube 
�
−2L , 2L

�n 
. Also, if there exists a x̂ such that Ax̂ ≤ b then 

That gives us a little cube around ˆ The time for finding an x in P is thus O(n · nL), because 

� 
1 

� � 
1 

� 
1 

A x̂± 
22L 

≤ b + 
22L 

namax e ≤ 
2L 

e where amax is max entry of A. 

′ x. 
the ratio of the volumes of 

�
−2L , 2L

�n 
to 

�
− 22

1 
L , 22

1 
L 

�n 
is 8Ln . Recall that finding x in P takes 

O(n log V ol(E0) ) iterations. That means LP takes polynomial time in L.
V ol(P ) 

Proof of Proposition 4: We first prove the forward direction. Suppose P =6 ∅. Our only worry 
is whether there is any element in P inside the big box. This has been done in previous lecture. We 
consider a vertex x in P (this exists because A has full column rank). This implies that x is defined 
by AS x = bS , where AS is a submatrix of A. Using Cramer’s rule, we can write x as 

p1 p2 pn 
x = , , · · · , 

q q q 

with |pi| < 2L and 1 ≤ q < 2L . 
We now work on the converse. {x : Ax ≤ b} = ∅ implies, by Farkas’ Lemma, there exists a y 

such that y ≥ 0, AT y = 0, and bT y = −1. We can choose a vertex of AT y = 0, bT y = −1, y ≥ 0. 
Rewrite this as � 

AT 
� � 

0 
� 

bT y = , y ≥ 0.
−1 

By Cramer’s rule, we can bound the components of a basic feasible solution y as: 

T 
�r1 rm 

� 

y = , · · · , , 
s s 

� 
AT 

� 

with 0 ≤ s, ri ≤ detmax bT . Expanding the determinant along the last row, we see that 
� 

AT 
� 

detmax bT ≤ mbmax detmax(A). Using the fact that 2L > 2m2n detmax(A)bmax, we obtain 

m m0 ≤ s, ri < 2m2n 2
L ≤ 2m+1 2

L . 
Therefore, 

� �T 21 1 m
b +

2L 
e y = bT y +

2L 
e T y = −1 + 

2m+1 
< 0. 

−1 

(The last inequality holds for m ≥ 1.) By Farkas’ Lemma again, this y shows that there is no x 
satisfying Ax ≤ b + 2

1 
L e, i.e. P ′ is empty. � 

1
Small detour: We have previously dealt with the constraint problem Ax = b, x ≥ 0. If this is non-empty, then 

we have a vertex in the feasible solution. However, there is not guaranteed if the constraints are of the form Ax ≤ b. 
But if we have rank(A) = n, A ∈ Rm×n, then a non-empty P will always contain a vertex. In our case, since we 
convert from the problem with constraints x ≥ 0, we would have inequalities −Ix ≤ 0 and full column rank. 
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2.4 Obtaining a solution 

′There is one last problem. If the ellipsoid method returns a x in P , x might not be in P . 
One solution is to round the coefficients of the inequalities to rational numbers and “repair” 

these inequalities to make x fit in P . This is called simultaneous Diophantine approximations, and 
will not be discussed. 

We can solve this problem by another method. We give a general method for finding a feasible 
solution of a linear program, assuming that we have a procedure that checks whether or not the 
linear program is feasible, e.g. ellipsoid algorithm. 

Assume, we want to find a solution of Ax ≤ b. The inequalities in this linear program can be 
written as aT

i x ≤ bi for i = 1, · · · , m. We use the following algorithm: 

1. I ← ∅. 

2. For i ← 1 to m do 

• If the set of solutions of 

a x ≤ bj ∀j = i + 1, · · · , m 
�

T
j

a x = bj ∀j ∈ I ∪ {i}T
j

is nonempty, then I ← I ∪ {i}. 

3. Finally, solve x in aT
i x = bi for i ∈ I with Gaussian elimination. 

We assume that the solution is a vertex and satisfies some equalities. If at step 2, making in­
equality i an equality makes the problem infeasible, then the vertex cannot depend on this inequality 
and we can discard it. 
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