
MIT OpenCourseWare
http://ocw.mit.edu

6.854J / 18.415J Advanced Algorithms
Fall 2008��

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

�

1

18.415/6.854 Advanced Algorithms October 15, 2008

Lecture 11
Lecturer: Michel X. Goemans

In this lecture, we will start continuing from where we left in the last lecture on linear
programming. We then argue that LP ∈ NP ∩ co − NP . In the end of this lecture, we
introduce the first polynomial algorithm to solve LP , known as the Ellipsoid Algorithm.

LP continuation

Last time, we had proved that, given a polyhedral set P = {x : Ax = b, x ≥ 0}, a point
x is a vertex of P if and only if A{j: xj >0} has linearly independent columns. Now assume
that rank(A) = m, where m is the number of rows. We had then defined the notion of a
basic feasible solution (bfs) corresponding to a basis B, see last lecture for details.

Theorem 1 Consider the polyhedral set P = {x : Ax = b, x ≥ 0} where rank(A) = m. A
point x is a vertex of P if and only if it is a basic feasible solution.

Proof: If x is a vertex of P , then we know that A{j :xj>0} has linearly independent
columns. Let J == {j : xj > 0}. Thus rank(AJ) = |J |. Since rank(A) = m, we can add
columns to J to get a set B with |B| = m and rank(AB) = m, i.e. AB is invertible. We
must have that:

A−1 xB = B b

xN = 0.

Therefore, x is a basic feasible solution.
Conversely, assume x is a basic feasible solution, that is,

xB = A−1bB

xN = 0.

By definition, J = {j : xj > 0} ⊆ B and the fact that rank(AB) = |B| implies that AJ has
linearly independent columns. Thus, x is a vertex of P . �

Theorem 2 Let P = {x : Ax = b, x ≥ 0}. Assume min{cT x : x ∈ P} is finite. Then, for
any x ∈ P , there exists a vertex x ′ ∈ P such that cT x ′ ≤ cT x

Proof: If x is a vertex, we are done. Otherwise, there exists y 6= 0 such that x± y is in P.
Note that, as Ay = 0 (because A(x + y) = b = Ax), for any α ∈ R, A(x + αy) = b. Observe
that,

(x + αy)j ≥ 0
for α ≤ −

x

y
j

j
, if yj < 0

always, if yj ≥ 0

11-1

�

�

� �

2

We may assume that cT y ≤ 0 (otherwise choose −y). Moreover, if cT y = 0, we can
assume that there exists j such that yj < 0.

Assume, by contradiction, that for all j, yj ≥ 0. Then, cT y < 0. But this implies that

c T (x + αy)→ −∞ as α →∞

Then min{cT x : x ∈ P} is not finite. Contradiction!
Therefore, there exists j such that yj < 0. Choose

α = min
xj

. (1)
j: yj <0 −yj

This implies that x + αy is in P , and cT (x + αy) ≤ cT x. Moreover, one more component of
′ x is 0. We can apply the same procedure to x = x+αy, and eventually we are going to get

to a vertex. (Formally, we could apply induction on the number of nonzero entries of x).

Size of LP

In order to be able to discuss the complexity for solving a linear program, we need first to
discuss the size of the input. We assume that every integer data is given in binary encoding,
thus for n ∈ Z, we need

size(n) = 1 + ⌈log2(|n| + 1)⌉

bits, for v ∈ Zp, we need
p

size(v) = (vi)
i=1

bits, and for A ∈ Znxm, we need

n m

size(A) = (ai,j).
i=1 j=1

bits. As a result, to represent all the data of a linear program, we need a size equal to

size(LP) = size(b) + size(c) + size(A).

The above size is not very convenient when proving the complexity of a linear program­
ming algorithm. Instead, we will be considering another size, defined by

L = m + n + log2(detmax) + log2(bmax) + log2(cmax),

where detmax = max | det(A ′)| over all submatrices A ′ of A, bmax = maxi |bi| and cmax =
maxj |cj |.

In the following two lemmas, we show that L is polynomially comparable with size(LP),
which implies that an algorithm has a running time polynomially bounded in terms of L if,
and only if, it is polynomial in size(LP).

11-2

� � �

�

. �

Lemma 3 If A ′ ∈ Zn×n then |det(A ′)| ≤ 2size(A ′)−n2
− 1.

Proof: Recall that for A ′ = [a1, a2, ..., ak], | det(A ′)| can be visualized as the volume of
the parallelipiped spanned by the column vectors. Hence,

n n n

1 + |det(A ′)| ≤ 1 + ‖ai‖ ≤ (1 + ‖ai‖) ≤ 2size(ai)−n = 2size(A ′)−n2
.

i=1 i=1 i=1

Lemma 4 L ≤ size(LP) ≤ mnL.

Proof: Using the fact that size(n) ≤ 2 + log2(n) for n ≥ 1, we have that the second
inequality holds because:

size(A) ≤ mn max (size(aij)) ≤ mn(2 + log2(detmax)),
i,j

size(b) ≤ m(2 + log2(bmax)),

and
size(c) ≤ n(2 + log2(cmax)).

Adding these together gives the desired inequality for m ≥ 2, n ≥ 2. The first ≤ holds
because, by the previous lemma, the determinant of any minor of A is bounded by the size
of A. Hence,

detmax ≤ 2size(A).

Also,
m + log bmax ≤ size(b),

and
n + log cmax ≤ size(c).

Finally,

2L = 2m2ndetmaxcmaxbmax ≤ 2size(LP)

From the definition of L, the following remark follows; this is what we will need mostly
when analyzing running times or sizes.

Remark 1 detmax ∗ bmax ∗ cmax ∗ 2m+n = 2L .

Complexity of LP

Here is the decision problem corresponding to linear programming.

Given A ∈ Zm×n , b ∈ Zm , c ∈ Zn, and λ, determine whether

min{c T x : Ax = b, x ≥ 0} ≤ λ. (2)

11-3

3

To show that LP is in NP, we need to be able to provide a concise (i.e. polynomially
bounded in the size of the input) certificate for yes instances. A feasible point of cost less
or equal to λ will clearly be a certificate, but will it be concise?

Claim 5 LP ∈ NP

We now show that if we take not just any feasible solution, but a basic feasible solution,
then its size will be polynomially bounded in the size of the input.

Theorem 6 Let x be a vertex (or basic feasible solution) of Ax = b, x ≥ 0. Then xi = p
q
i .

for i=1,...,n where pi, q ∈ N and pi < 2L and q < 2L .

Proof: Since x is a vertex, then x is a basic feasible solution with basis B such that
xB = A−1b and xN = 0 (notice that AB is square). By Cramer’s rule: B

A−1 1
xB = B b = cof(AB)b,

det(AB)

where cof(A) is a matrix whose entries are all determinants of submatrices of A. Letting
q = det(AB), we get that q ≤ detmax < 2L and pi ≤ m detmax bmax < 2L . �

Now, to prove Claim 5, for yes instances, the certificate will be a vertex of {x : Ax =
b, x ≥ 0} such that cT x ≤ λ.

However, to be precise, we also have to deal with the case in which the LP is unbounded,
since in that case, there might not be any such vertex. But in that case, we can give a
certificate of unboundedness by (i) exhibiting a vertex of {x : Ax = b, x ≥ 0} (showing
it is not empty, and it is concise by the above theorem) and (ii) showing that the dual
feasible region {y : AT y ≤ c} is empty by using Farkas’ lemma and exhibiting a vertex of
Ax = b, x ≥ 0, cT x = −1 which is also concise by the above theorem.

Alternatively, one can show a concise feasible solution to

min{c T x : Ax = b, x ≥ 0, c T x ≤ λ− 1}. (3)

Claim 7 LP ∈ co − NP .

Indeed, for the complement instances of LP, we can use strong duality and exhibit a
basic feasible solution of AT y ≤ c s.t. bT y > λ (or show that {x ≥ 0 : Ax = b} is empty
using Farkas’ lemma). In the case when {x : Ax = b, x ≥ 0} is feasible, the correctness
follows from strong duality saying that

min{c T x : Ax = b, x ≥ 0} = max{bT y : AT y ≤ c}.

Thus, LP ∈ NP ∩ co− NP which makes it likely to be in P. And indeed, LP was shown
to be polynomially solvable through the ellipsoid algorithm.

11-4

4

E1

E0
a 0

a1
P

Figure 1: One iteration of the ellipsoid algorithm.

The Ellipsoid Algorithm

The Ellipsoid algorithm was proposed by the Russian mathematician Shor in 1977 for
general convex optimization problems, and applied to linear programming by Khachyan in
1979. The problem being considered by the ellipsoid algorithm is:

Given a bounded, convex, non-empty and full-dimensional set P ∈ R
n find

x ∈ P .

We will see that we can reduce linear programming to an instance of this problem.
The ellipsoid algorithm works as follows. We start with a big ellipsoid E that is guar­

anteed to contain P . We then check if the center of the ellipsoid is in P . If it is, we are
done, we found a point in P . Otherwise, we find an hyperplane passing through the center
of the ellipsoid, so that P is contained in one of the half spaces defined by it. One iteration
of the ellipsoid algorithm is illustrated in Figure 1. The ellipsoid algorithm is the following.

• Let E0 be an ellipsoid containing P

• while center ak of Ek is not in P do:

– Let cT
k x ≤ cT

k ak be such that {x : cT
k x ≤ ck

T ak} ⊇ P

– Let Ek+1 be the minimum volume ellipsoid containing Ek ∩ {x : ck
T x ≤ ck

T ak}

– k ← k + 1

The ellipsoid algorithm has the important property that the ellipsoids constructed shrink
by, at least, a constant (depending on the dimension) factor in volume as the algorithm
proceeds; this is stated precisely in the next lemma. As P is full dimensional, we will
eventually find a point in P .

Lemma 8
V ol(Ek+1)

< e
−

2n
1

+2 .
V ol(Ek)

11-5

Note that the ratio is independent of k.
Before we can state the algorithm more precisely, we need to define ellipsoids.

Definition 1 Given a center a, and a positive definite matrix A, the ellipsoid E(a,A) is
defined as {x ∈ Rn : (x − a)T A−1(x − a) ≤ 1}.

One important fact about a positive definite matrix A is that there exists B such that
A = BT B, and hence A−1 = B−1(B−1)T . Ellipsoids are in fact just affine transformations
of unit balls. To see this, consider the (bijective) affine transformation T : x → y =
(B−1)T (x − a). It maps E(a,A)→ {y : yT y ≤ 1} = E(0, I), the unit ball.

V ol(Ek+1)This gives a motivation for the fact that the ratio
V ol(Ek) is independent of k. Indeed,

as linear transformations preserve ratio of volumes, we can reduce to the case when Ek is
the unit ball. In this case, by symmetry of the ball, the volume ratio will be independent
of k.

11-6

