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18.415/6.854 Advanced Algorithms October 15, 2008


Lecture 11 
Lecturer: Michel X. Goemans 

In this lecture, we will start continuing from where we left in the last lecture on linear 
programming. We then argue that LP ∈ NP ∩ co − NP . In the end of this lecture, we 
introduce the first polynomial algorithm to solve LP , known as the Ellipsoid Algorithm. 

LP continuation 

Last time, we had proved that, given a polyhedral set P = {x : Ax = b, x ≥ 0}, a point 
x is a vertex of P if and only if A{j: xj >0} has linearly independent columns. Now assume 
that rank(A) = m, where m is the number of rows. We had then defined the notion of a 
basic feasible solution (bfs) corresponding to a basis B, see last lecture for details. 

Theorem 1 Consider the polyhedral set P = {x : Ax = b, x ≥ 0} where rank(A) = m. A 
point x is a vertex of P if and only if it is a basic feasible solution. 

Proof: If x is a vertex of P , then we know that A{j :xj>0} has linearly independent 
columns. Let J == {j : xj > 0}. Thus rank(AJ ) = |J |. Since rank(A) = m, we can add 
columns to J to get a set B with |B| = m and rank(AB) = m, i.e. AB is invertible. We 
must have that: 

A−1 xB = B b 

xN = 0. 

Therefore, x is a basic feasible solution. 
Conversely, assume x is a basic feasible solution, that is, 

xB = A−1bB 

xN = 0. 

By definition, J = {j : xj > 0} ⊆ B and the fact that rank(AB) = |B| implies that AJ has 
linearly independent columns. Thus, x is a vertex of P . � 

Theorem 2 Let P = {x : Ax = b, x ≥ 0}. Assume min{cT x : x ∈ P} is finite. Then, for 
any x ∈ P , there exists a vertex x ′ ∈ P such that cT x ′ ≤ cT x 

Proof: If x is a vertex, we are done. Otherwise, there exists y 6= 0 such that x± y is in P. 
Note that, as Ay = 0 (because A(x + y) = b = Ax), for any α ∈ R, A(x + αy) = b. Observe 
that, 

(x + αy)j ≥ 0 
for α ≤ −

x

y
j

j 
, if yj < 0 

always, if yj ≥ 0 
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We may assume that cT y ≤ 0 (otherwise choose −y). Moreover, if cT y = 0, we can 
assume that there exists j such that yj < 0. 

Assume, by contradiction, that for all j, yj ≥ 0. Then, cT y < 0. But this implies that 

c T (x + αy)→ −∞ as α →∞ 

Then min{cT x : x ∈ P} is not finite. Contradiction! 
Therefore, there exists j such that yj < 0. Choose 

α = min 
xj 

. (1) 
j: yj <0 −yj 

This implies that x + αy is in P , and cT (x + αy) ≤ cT x. Moreover, one more component of 
′ x is 0. We can apply the same procedure to x = x+αy, and eventually we are going to get 

to a vertex. (Formally, we could apply induction on the number of nonzero entries of x). 

Size of LP 

In order to be able to discuss the complexity for solving a linear program, we need first to 
discuss the size of the input. We assume that every integer data is given in binary encoding, 
thus for n ∈ Z, we need 

size(n) = 1 + ⌈log2(|n| + 1)⌉ 

bits, for v ∈ Zp, we need 
p 

size(v) = (vi) 
i=1 

bits, and for A ∈ Znxm, we need 

n m 

size(A) = (ai,j ). 
i=1 j=1 

bits. As a result, to represent all the data of a linear program, we need a size equal to 

size(LP ) = size(b) + size(c) + size(A). 

The above size is not very convenient when proving the complexity of a linear program­
ming algorithm. Instead, we will be considering another size, defined by 

L = m + n + log2(detmax) + log2(bmax) + log2(cmax), 

where detmax = max | det(A ′ )| over all submatrices A ′ of A, bmax = maxi |bi| and cmax = 
maxj |cj |. 

In the following two lemmas, we show that L is polynomially comparable with size(LP ), 
which implies that an algorithm has a running time polynomially bounded in terms of L if, 
and only if, it is polynomial in size(LP ). 
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Lemma 3 If A ′ ∈ Zn×n then |det(A ′ )| ≤ 2size(A ′ )−n2 
− 1. 

Proof: Recall that for A ′ = [a1, a2, ..., ak], | det(A ′ )| can be visualized as the volume of 
the parallelipiped spanned by the column vectors. Hence, 

n n n 

1 + |det(A ′ )| ≤ 1 + ‖ai‖ ≤ (1 + ‖ai‖) ≤ 2size(ai)−n = 2size(A ′)−n2 
. 

i=1 i=1 i=1 

Lemma 4 L ≤ size(LP) ≤ mnL. 

Proof: Using the fact that size(n) ≤ 2 + log2(n) for n ≥ 1, we have that the second 
inequality holds because: 

size(A) ≤ mn max (size(aij )) ≤ mn(2 + log2(detmax)), 
i,j 

size(b) ≤ m(2 + log2(bmax)), 

and 
size(c) ≤ n(2 + log2(cmax)). 

Adding these together gives the desired inequality for m ≥ 2, n ≥ 2. The first ≤ holds 
because, by the previous lemma, the determinant of any minor of A is bounded by the size 
of A. Hence, 

detmax ≤ 2size(A). 

Also, 
m + log bmax ≤ size(b), 

and 
n + log cmax ≤ size(c). 

Finally,

2L = 2m2ndetmaxcmaxbmax ≤ 2size(LP)


From the definition of L, the following remark follows; this is what we will need mostly 
when analyzing running times or sizes. 

Remark 1 detmax ∗ bmax ∗ cmax ∗ 2m+n = 2L . 

Complexity of LP 

Here is the decision problem corresponding to linear programming. 

Given A ∈ Zm×n , b ∈ Zm , c ∈ Zn, and λ, determine whether 

min{c T x : Ax = b, x ≥ 0} ≤ λ. (2) 
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To show that LP is in NP, we need to be able to provide a concise (i.e. polynomially 
bounded in the size of the input) certificate for yes instances. A feasible point of cost less 
or equal to λ will clearly be a certificate, but will it be concise? 

Claim 5 LP ∈ NP 

We now show that if we take not just any feasible solution, but a basic feasible solution, 
then its size will be polynomially bounded in the size of the input. 

Theorem 6 Let x be a vertex (or basic feasible solution) of Ax = b, x ≥ 0. Then xi = p
q 
i . 

for i=1,...,n where pi, q ∈ N and pi < 2L and q < 2L . 

Proof: Since x is a vertex, then x is a basic feasible solution with basis B such that 
xB = A−1b and xN = 0 (notice that AB is square). By Cramer’s rule: B 

A−1 1 
xB = B b = cof(AB )b, 

det(AB ) 

where cof(A) is a matrix whose entries are all determinants of submatrices of A. Letting 
q = det(AB ), we get that q ≤ detmax < 2L and pi ≤ m detmax bmax < 2L . � 

Now, to prove Claim 5, for yes instances, the certificate will be a vertex of {x : Ax = 
b, x ≥ 0} such that cT x ≤ λ. 

However, to be precise, we also have to deal with the case in which the LP is unbounded, 
since in that case, there might not be any such vertex. But in that case, we can give a 
certificate of unboundedness by (i) exhibiting a vertex of {x : Ax = b, x ≥ 0} (showing 
it is not empty, and it is concise by the above theorem) and (ii) showing that the dual 
feasible region {y : AT y ≤ c} is empty by using Farkas’ lemma and exhibiting a vertex of 
Ax = b, x ≥ 0, cT x = −1 which is also concise by the above theorem. 

Alternatively, one can show a concise feasible solution to 

min{c T x : Ax = b, x ≥ 0, c T x ≤ λ− 1}. (3) 

Claim 7 LP ∈ co − NP . 

Indeed, for the complement instances of LP, we can use strong duality and exhibit a 
basic feasible solution of AT y ≤ c s.t. bT y > λ (or show that {x ≥ 0 : Ax = b} is empty 
using Farkas’ lemma). In the case when {x : Ax = b, x ≥ 0} is feasible, the correctness 
follows from strong duality saying that 

min{c T x : Ax = b, x ≥ 0} = max{bT y : AT y ≤ c}. 

Thus, LP ∈ NP ∩ co− NP which makes it likely to be in P. And indeed, LP was shown 
to be polynomially solvable through the ellipsoid algorithm. 
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Figure 1: One iteration of the ellipsoid algorithm. 

The Ellipsoid Algorithm 

The Ellipsoid algorithm was proposed by the Russian mathematician Shor in 1977 for 
general convex optimization problems, and applied to linear programming by Khachyan in 
1979. The problem being considered by the ellipsoid algorithm is: 

Given a bounded, convex, non-empty and full-dimensional set P ∈ R
n find 

x ∈ P . 

We will see that we can reduce linear programming to an instance of this problem. 
The ellipsoid algorithm works as follows. We start with a big ellipsoid E that is guar­

anteed to contain P . We then check if the center of the ellipsoid is in P . If it is, we are 
done, we found a point in P . Otherwise, we find an hyperplane passing through the center 
of the ellipsoid, so that P is contained in one of the half spaces defined by it. One iteration 
of the ellipsoid algorithm is illustrated in Figure 1. The ellipsoid algorithm is the following. 

• Let E0 be an ellipsoid containing P 

• while center ak of Ek is not in P do: 

– Let cT
k x ≤ cT

k ak be such that {x : cT
k x ≤ ck

T ak} ⊇ P 

– Let Ek+1 be the minimum volume ellipsoid containing Ek ∩ {x : ck
T x ≤ ck

T ak} 

– k ← k + 1 

The ellipsoid algorithm has the important property that the ellipsoids constructed shrink 
by, at least, a constant (depending on the dimension) factor in volume as the algorithm 
proceeds; this is stated precisely in the next lemma. As P is full dimensional, we will 
eventually find a point in P . 

Lemma 8 
V ol(Ek+1) 

< e 
− 

2n
1

+2 .
V ol(Ek) 
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Note that the ratio is independent of k. 
Before we can state the algorithm more precisely, we need to define ellipsoids. 

Definition 1 Given a center a, and a positive definite matrix A, the ellipsoid E(a,A) is 
defined as {x ∈ Rn : (x − a)T A−1(x − a) ≤ 1}. 

One important fact about a positive definite matrix A is that there exists B such that 
A = BT B, and hence A−1 = B−1(B−1)T . Ellipsoids are in fact just affine transformations 
of unit balls. To see this, consider the (bijective) affine transformation T : x → y = 
(B−1)T (x − a). It maps E(a,A)→ {y : yT y ≤ 1} = E(0, I), the unit ball. 

V ol(Ek+1)This gives a motivation for the fact that the ratio 
V ol(Ek) is independent of k. Indeed, 

as linear transformations preserve ratio of volumes, we can reduce to the case when Ek is 
the unit ball. In this case, by symmetry of the ball, the volume ratio will be independent 
of k. 
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