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18.415/6.854 Advanced Algorithms October 8, 2008 

Lecture 10 
Lecturer: Michel X. Goemans 

Last lecture we introduced the basic formulation of a linear programming problem, namely the 
problem with the objective of minimizing the expression cT x (where c ∈ Rn, x ∈ Rn) subject to 
the constraints Ax = b where A ∈ Rmxn, b ∈ Rm) and x ≥ 0. We then introduced the dual linear 
program, with the objective of maximizing bT y, subject to the constraints that AT y ≤ c. Eventually, 
we were able to relate the two forms via the Theorem of Strong Duality, which states that if either 
the primal or the dual has a feasible solution then their values are equal: 

w := min{c T x : Ax = b, x ≥ 0} = max{bT y : AT y ≤ c} =: z. 

Today, we further explore duality by justifying the Theorem of Strong Duality via a physical 
argument, introducing rules for constructing dual problems for non-standard linear programming 
formulations, and further discussing the notion of complementary slackness mentioned in the last 
lecture. We then shift gears and discuss the geometry of linear programming, which leads us to the 
Simplex Method of solving linear programs. 

1 The Dual 

1.1 Physical Justification of the Dual 

Consider the standard dual form of a linear program. The set of feasible solutions y that satisfy the 
constraints AT y ≤ c form a polyhedron in Rn; this is the intersection of m halfspaces. Consider a 
tiny ball within this polyhedron at position y. To maximize bT y, we move the ball as far as possible 
in the direction of b within the confines of our polyhedron. This is analogous to having a force, say 
gravity, acting on the ball in the b direction. 

We now switch over entirely to the physical analogy. At equilibrium, the ball ends up at a point 
y maximizing bT y over AT y ≤ c, and the gravity force b is in equilibrium with the forces exerted 
against the ball by the ’walls’ of our polyhedron. These wall forces are normal to the hyperplanes 
defining them, so for the hyperplane defined by aj

T y ≤ c (where aj is the jth column of A), the force 
exerted on the ball can be expressed as −xj aj for some magnitude multiplier xj ≥ 0. As stated 
previously, our ball is at equilibrium (there is no net force on it), and so we find 

b − xj aj = 0. 
j 

We also note that for any wall which our ball is not touching, there is no force exerted by that wall 
on the ball. This is equivalent to saying 

xj = 0 if aj
T y < cj . 

We now argue that these multipliers xj form an optimum solution to the primal linear program. 
We first note that � 

b − xj aj = 0 
j 

is equivalent to Ax = b, and that the multipliers xj are either zero or positive, and thus x ≥ 0. 
This shows that our xj ’s yield a feasible solution to the primal, now we need to prove that the xj ’s 
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Figure 1: Physical visualization of the dual with n = 2 (two dimensions), m = 6 (six hyperplanes), 
and b as gravity. The dual is maximized when our bT y ball is at the lowest point of the polyhedron. 

minimize the primal. For this, we will show that the value cT x equals bT y, and therefore by weak 
duality, this will mean that x is a minimizer for the primal. The value cT x is: 

c T x = cj xj = (aj
T y)xj , 

j j 

since xj is non-zero only where aT
j y = cj (a non-zero force is only exerted by a wall on our ball if 

the ball is touching that wall), and thus 

c T x = (aj
T y)xj = y T ( aj xj ) = y T b = bT y. 

j j 

1.2 Rules for Writing a Dual 

So far, we have dealt only with the dual of the standard primal linear programming problem, 
minimizing cT x such that Ax = b and x ≥ 0. What if we are confronted with a non-standard linear 
program, such as a program that involves inequalities on the aij xj , or non-positivity constraints on 
the xj ? We have two options. The first is to massage the linear program into the standard primal 
form, immediately convert to the standard dual, and then potentially massage the dual problem into 
a form more suitable to our original problem. This can be a long, frustrating process, however, and 
so instead we present a set of standard rules for converting any linear program into its dual form. 

Consider a linear problem with the objective of minimizing j cj xj subject to the following 
constraints: ⎧ ⎪⎨= bi i ∈ I=


≥ bi i ∈ I≥ (1)
aij xj ⎪⎩j ≤ bi i ∈ I≤ 

xj 

⎧ ⎪⎨ ⎪⎩ 

≥ 0 j ∈ J+


≤ 0 j ∈ J− (2)

∈ R j ∈ J0. 

Earlier, the way we obtained the dual was to get a lower bound (or an upper bound if it was a 
maximization problem) on the objective function of the primal, and to maximize this upper bound. 
We claim that the same process leads to the dual of maximizing i biyi subject to the constraints: 
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⎧ ⎪⎨ 
aij yi 

≤ cj j ∈ J+


≥ cj j ∈ J− (3)
⎪⎩i = cj j ∈ J0 

yi 

⎧ ⎪⎨ ⎪⎩ 

≥ 0 i ∈ I≥ 

≤ 0 i ∈ I≤ (4) 
∈ R i ∈ I= 

Weak duality is pretty straightforward. Constraints (4) on yi guarantee that, when multiplying 
constraint (1) by yi and summing them over i, we get 

yi aij xj ≥ yibi. (5) 
i j i 

Similarly, constraints (3) together with constraints (2) imply that 

cj xj ≥ xj aij yi. (6) 
j j i 

The left-hand-side of (5) being equal to the right-hand-side of (6) (after rearranging the summation), 
we get weak duality that 

c T x ≥ bT y. 

And strong duality also holds provided that either the primal or the dual has a feasible solution. 

1.3 Complementary Slackness 

Complementary slackness allows to easily check when a feasible primal and dual solutions are simul­
taneously optimal. Consider the primal 

min{c T x : Ax = b, x ≥ 0}. 

Consider an alternative definition of the dual LP obtained by adding slack variables: 

max{bT y : AT y + Is = c, s ≥ 0}, 

where s ∈ Rn . Given a feasible primal solution x and a feasible dual solution (y, s), we see that the 
difference in their value is 

c T x − bT y = s T x + y T Ax − y T b = s T x, 

and this quantity better be 0 if x is optimum for the primal and (y, s) is optimal for the dual. Notice 
that x ≥ 0 and s ≥ 0, and therefore xT s = 0 if and only if xj sj = 0 for all j. Thus, for the 2 
solutions to be simultaneously optimum in the primal and in the dual, we need that, for all j, xj = 0 
whenever sj > 0 (or equivalently that sj = 0 whenever xj > 0). 

Summarizing, we have: 

Theorem 1 Let x∗ be feasible in the primal, and (y∗, s∗) be feasible in the dual. Then the following 
are equivalent. 

1. x∗ is optimal in the primal, and (y∗, s∗) is optimal in the dual, 

2. For all j: x∗ 
j > 0 = ⇒ sj

∗ = 0, 
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3. For all j: x∗ 
j s

∗ 
j = 0, 

4. x∗ 
j s

∗ 
j = 0. 

j 

For a general pair of primal-dual linear programs as given in (1)-(2) and (3)-(4), complementary 
slackness says that, for x to be optimal in the primal and for y to be optimal in the dual, we must 
have that 

1. yi = 0 whenever j aij xj =� bi and, 

2. xj = 0 whenever i aij yi =� cj . 

The Geometry of Linear Programming 

We now switch gears and discuss the geometry of linear programming. First, we define a polyhedral 
set P = {x ∈ Rn : Ax ≤ b} as the finite intersection of halfspaces. We then define a vertex of 
polyhedral set P to be any x ∈ P such that x + y ∈ P ∧ x − y ∈ P = ⇒ y = 0. Intuitively, a vertex 
is a “corner” of a polyhedral set. We can state this geometric definition also algebraically. Given an 
index set J ⊆ {1, 2, · · · , n}, AJ denotes the m × |J | submatrix of A consisting of all columns of A 
indexed by J . 

Lemma 2 For P = {x : Ax = b, x ≥ 0} and x ∈ P , x is a vertex of P if and only if AJ has linearly 
independent colums for J = {j : xj > 0}. 

Proof: For both directions, we prove the contrapositive. 
⇐ �: Assuming x is not a vertex implies that ∃y = 0 : x + y, x − y ∈ P . Therefore A(x + y) = 

b, A(x − y) = b, which implies that Ay = 0. However, because membership in P requires points to 
be non-negative, we have that if xj = 0 then yj = 0. Thus, if we let w = yJ (i.e. w corresponds 
to the components of y in J), we see that w = 0 and � AJ w = 0, which implies that AJ has linearly 
dependent columns. 

: If AJ has linearly dependent columns, then ∃w = 0 : AJ w = 0. This implies you can construct ⇒ �
a y via zero padding such that y = 0 and Ay = 0, yj = 0 for j �∈ J . Thus, A(x + �y) = A(x − �y) = b 
for any � ∈ R. We also note that 

�
xj ± �yj ≥ 0 if � ≤ xj , which is strictly greater than 0. Therefore, |yj | 

if we choose � = min 
xj , we have that x ± �y ∈ P , and thus x is a not a vertex of P . � 

j:yj =0
� |yj |

We can take the notions in this lemma a step further by introducing the notions of a basis, a 

basic solution, and a basic feasible solution. For what follows, we assume that rank(A) = m (if 
that’s not the case, then either there is no solution to Ax = b and our problem is infeasible, or there 
exists a redundant constraint (possibly more than one) in Ax = b which can be removed). 

Definition 1 For a polyhedral set P = {x : Ax = b, x ≥ 0}, a basis B is a subset of {1...n} such 
that |B| = m and AB is invertible (i.e. rank(AB ) = m). 

Definition 2 x is a basic solution of P if ∃ basis B : xB = A−1b, xN = 0 for N = {1...n} \ B.B 

Note that by this definition, AB xB + AN xN = b must be true, but x could be negative and 
therefore infeasible. 

Definition 3 x is a basic feasible solution (bfs) if it is a basic solution such that x ≥ 0. 

We are now ready to prove the following theorem relating vertices to basic feasible solutions. 
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Theorem 3 Given a polyhedral set P = {x : Ax = b, x ≥ 0} such that rank(A) = m, and a point 
x ∈ P , x is a vertex of P if and only if it is a basic feasible solution of P . 

Proof: Will be provided in Lecture 11. � 
There are several notable remarks to make pertaining to this theorem: 

•	 The vertex to basic feasible solution relationship is one-to-many, or in other words, there may 
be multiple basic feasible solutions that correspond to a single vertex. 

•	 The number of vertices of P is less than or equal to the number of bases of P . This follows from 
the first remark, and the fact that some bases may be infeasible. Therefore, the number of 

nvertices of P is upper bounded by m . However, a stricter upper bound has been shown using 
a more detailed analysis, namely the number of vertices of P is upper bounded approximately 

m

by n− 2 .m 
2 

We now know that finding basic feasible solutions of P is equivalent to finding vertices of P . Why 
is this important? Because there must an optimum solution to our linear programming problem that 
is a vertex of the polyhedral set defined by the linear constraints. More formally, 

Theorem 4 Given a polyhedral set P = {x : Ax = b, x ≥ 0}, if min{cT x : x ∈ P } is finite (the 
program is feasible and bounded), and x ∈ P , then ∃ vertex x�ofP : cT x� ≤ cT x. 

Proof: Will be provided in Lecture 11.	 � 

This theorem directly leads us to the insight behind the Simplex Method for solving linear 
programs by finding the best vertex. 

Sketch of the Simplex Method 

Here is a very basic sketch of how the simplex method works. 

1. Choose a basic feasible solution x corresponding to the basis B. 

2. While x is not an optimal solution, choose j and k such that the new basis B� 

T T	
= B \ {j}∪ {k}

forms a bfs x� with c x ≤ c x. 

There are several important remarks to make about this method: 

•	 It is not clear that j and k will always exist. But they do, and this can be shown. 

•	 As defined, x and x� will either be equal or will be ’adjacent’ vertices on P . 

•	 The reason it is called a ’method’ and not an algorithm is because we haven’t specified yet 
how to choose j and k if several choices exist. The choice of j and k is referred to as a pivoting 
rule; many pivoting rules have been proposed. 

•	 As such, there is no guarantee that cT x� < cT x, namely we could have cT x� = cT x; in fact 
we could even have x� = x since we could switch from one basis to another representing the 
same vertex. There is therefore the risk that we repeat the same basis and the algorithm 
never terminates. And this can happen for some of the pivoting rules. There exist however 
anticycling pivoting rules which guarantee that the same basis is never repeated. With such a 
rule, the simplex method will terminate since there are finitely many bases. 

•	 The running time of the simplex method depends on the number of bases considered before 
finding an optimal one. 
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•	 For all currently known pivoting rules, there is at least one instance that will cause the simplex 
method to run in exponential time. (This is in contrast with the simplex method in practice 
for which the number of iterations is usually good. A partial explanation of this sharp contrast 
between the worst-case behavior and a typical behavior is highlighted in the work of Spielman 
and Teng on smoothed analysis.) 

We will cover other algorithms that will guarantee a polynomial running time in the worst-case; 
they will however not proceed from vertex to vertex of the polyhedral set. 

There is a lower bound on the number of iterations of the Simplex Method, which is the number 
of edges in the path from the starting vertex of P to the optimum vertex of P . For a given P , this 
lower bound will be the diameter of P , the maximum over all pairs of vertices of the length of the 
shortest path between them. In 1957, Hirsch conjectured that the diameter of a polyhedral set is 
upper bounded by n − d, where d is the dimension of the space, and n is the number of hyperplanes 
defining P . While this has not been proven true in the general case, the following results have been 
found: 

•	 The conjecture is not true in the unbounded case, namely there exist unbounded polyhedra 
with diameter n − d + � d 

5 �. 

•	 No polynomial bound on the diameter is known for the general case (even for just bounded 
polyhedra). 

•	 Kalai and Kleitman derived a subexponential bound nO(log d) on the diameter. 

•	 If the Hirsch Conjecture can be proven for n = 2d, then the conjecture holds for all n. 

•	 The Hirsch Conjecture is true for polytopes with all their vertces in {0, 1}d . 
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