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18.415/6.854 Advanced Algorithms 

Problem Set Solution 2 

1. The Min s-t-Cut problem is the following: 

Given a n  undirected graph G = (V,E), a weight function w : E +R+, 
and two vertices s, t E V, find 

Min s - t -Cut(G) = min{w(S(S)) : S c V, s E S,t $ S).  

where 6(S) denotes the cut 

6(S) = {(i,j) E E : I{i,j) nSI = 1) 

and 

(a) 	Argue (in just a few lines) that there is a polynomial-time al- 
gorithm to find a Min s - t-cut based on linear programming 
(remember Problem Set 1). (Be careful; problem set 1defined 
the Min s-t-cut problem for a directed graph, while this problem 
considers undirected graphs.) [We will see a much more efficient 
algorithm for it (not based on linear programming) later this 
semester.] 
The description of the (directed) Min s-t-cut problem as a linear program 
from Problem 1shows immediately that we can solve it in polynomial time, 
for example by the ellipsoid algorithm. Given an undirected graph, we can 
transform it into a directed graph simply by producing two directed edges 
(one each way) for every undirected edge. Then cuts in the directed graph 
correspond exactly to cuts in the undirected graph, with the same weight. 

We are going to develop an algorithm for a generalization of the 
problem: 

Given a n  undirected graph G = (V,E), w : E -t R+, and a n  even 
cardinality subset of vertices T V, find 

Min T -Odd - Cut(G) = min{w (b(S)) : S c V,IS f l  TI = odd} 

That is, we want to optimize over all cuts that separate T into two 
parts of odd size (since IT1 is even, ISnTI odd implies that IT\ SI odd 
as well). 



(b) 	Suppose that IT1 = 2, say T = {s,t). What is the Min T-Odd-Cut 
then? 

Since any T-odd cut must split T into two odd parts, there is only one 

way to do that - have s and t on opposite sides of the cut. Thus the Min 

T-odd cut is exactly the Min s - t cut. 


(c) 	For a given T C V, call a cut 6(S) T-splitting if 0 # SnT # T. 
Using a s-t-Min-Cut algorithm, show how we can find the min- 
imum T-splitting cut in polynomial time. Can you do it in at 
most IT1 calls to a Min s-t-Cut algorithm? 
Choose a fixed s E T .  For every cut b(S) ,  we can assume s E S (the 
graph is undirected and V \ S defines the same cut). Moreover, for every 
T-splitting cut, there exists a vertex t E T \ S and such a cut is an s-t-cut 
as well. It is sufficient to find the minimum s-t-cut for every t E T \ {s} 
and take the minimum of all these cuts. 

(d) 	For any two sets C and D (0 # C,D c V), prove the inequality 
that 


w(b(C \ D))  +w(b(D \ C))5 w(b(C)) +w(b(D)). 


We apply the definition of a cut - 6(X) is the set of all edges between X 
and V \ X :  

(e) 	Prove that if 6(C) is a minimum T-splitting cut then there is a 
minimum T-odd-cut 6(D) such that either D C or C & D. 
Hint: Use the inequality proved above. 
Suppose b(C) is the minimum T-splitting cut. If IC nTI is odd then C 
is also the minimum T-odd cut and we can choose D = C. Otherwise 
suppose IC nTI is even, while b(D') is the minimum T-odd cut. 



Since I D' nTI is odd, either I (Dl n C)nTI or I (D' \ C)n TI is odd. Denote 
by C' either C or V \ C so that I (Dl n C') nTI is odd. Note that in any 
case 6(C1) = S(C) and IC' n TI is even. 

Since S(C1) is a T-splitting cut, (V \ C') n T is nonempty which implies 
that either (D' \ C') n T is nonempty or ((V \ D') \ C') n T is nonempty. 
Without loss of generality, we can assume that (Dl \ C') nT is nonempty, 
otherwise we rename D' to V \ D' which doesn't change the cut (and the 
new D' still satisfies I (Dl n C') n TI is odd since IC' n TI is even). 

Because 6(C1) is the smallest T-splitting cut and S(D1 \ C') is a T-splitting 
cut, we have w(S(C1)) 5 w(6(D1\ C')). Since I(C' n Dl) n TI is odd, 
I (C'\ Dl) nT I is odd as well. The smallest T-odd cut is 6(D1), so w (6(D1))5 
w(S(C1\ Dl)). Comparing these two inequalities with the one given in the 
hint, w(6(C1)) + w(S(D1))2 w(S(C1\ Dl)) + w(S(D1\ C')), we find that 
they must all hold with equality and 6(C1 \ D') is a minimum T-odd cut 
as well. 

In case C' = C, we can choose D = C1\D' and we have a minimum T-odd 
cut D c C. In case C' = V \ C, we can choose D = V \ (C' \ D') and we 
have a minimum T-odd cut such that C c D. 

(f) 	Use the previous observation to design a recursive algorithm 
which solves Min T-Odd-Cut in polynomial time. (Hint: pos- 
sibly think about modifying the graph.) How many calls (in O ( * )  
notation) to a Min s-t-Cut algorithm does your algorithm per- 
form? 

MinOddCut (G,  T )  

{ 

C = MinCut (G,  T )  ; 

i f  (IC n TI = odd) r e tu rn  C ;  


G1 = Contract (G,  C )  ; 


G2 = Contract (G,  V \ C )  ; 


C1 = MinOddCut (GI,  \ C )  ; 

C2 = MinOddCut (G2, T fl C )  ; 


i f  (weight ( 6 ( 4 ) )  < weight (6(C2)) r e tu rn  C1; 

e l s e  r e tu rn  C2; 


} 

Here, MinCut (G, T) is supposed to return the minimum T-splitting cut in 
G and Contract (G, C) should merge C into a single vertex and update 
the edges accordingly (i.e. any edge between a vertex u of C and a vertex 



v not in C becomes a new edge between the new shrunk vertex and v; if 
there are multiple edges between two vertices, we can replace them by one 
edge with weight equal to  the sum of the weights). 

The correctness of the algorithm follows from the previous observations. 
Either the minimum cut S(C) is T-odd, or we can assume that the mini- 
mum T-odd-cut is S(D) where C C_ D or D C. Cuts 6(D) where C C_ D 
are equivalent to cuts in the graph G1 where C is contracted to a single 
vertex. Cuts 6(D) where D C are equivalent to cuts in the graph G2 
where V \ C is contracted to  a single vertex. The smaller of the two cuts 
must be the minimum T-odd cut. 
Finally, let's analyze the running time of this algorithm. The body of the 
function (excluding the recursive calls) runs in time polynomial in the size 
of the input graph (MinCut algorithm + elementary graph operations). It 
remains to  estimate the number of recursive calls to  MinOddCut. Denote 
the size of the input set T by t.  Note that if the function is called with 
parameter T and it produces recursive calls with parameters TI and T2, 
then IT1 = ITl I + IT21. Since lz1 2 2 in the leaves of the recursion tree, the 
number of leaves is at  most i. The tree is binary, so the number of nodes 
is at  most t. Therefore the total number of recursive calls to  MinOddCut is 
linear in IT I. 

Each call to MinOddCut will require a number of calls to a Min s - t-cut 
algorithm less than t = ITI. Hence, the tot a1 number of calls to a Min 
s-t-cut algorithm is O(IT 1 2 ) .  (By studying the problem, one can actually 
solve the Min T-odd-cut problem with O(IT1) calls to a Min s - t-cut 
algorithm.) 

2. 	Use the ellipsoid method to solve the minimum weight perfect match- 
ing problem (there is a more efficient combinatorial algorithm for it, 
but here we will use the power of the ellipsoid algorithm): 

Given a n  undirected graph G = (V,E) and a weight function w : 
E 	tN ,  find a set  of edges M covering every vertex exactly once ( a  
perfect matching) wi th the minimum total weight. 

In order to formulate this problem as a linear program, we define the 
perfect matching polytope: 

P = conv{xM E {O, 1IE: M is a perfect matching) 

where XM is the characteristic vector of M (xM(e) = 1 if e E M and 0 
otherwise). The convex hull conv(A) is defined as {xiXixi : xi E A, Xi > 
0, xiX i  = 1) (where the summation is finite). 



(a) 	Argue that the vertices of P are the characteristic vectors of 
perfect matchings. Deduce that if we can optimize Cewexe over 
P, we would find a minimum weight perfect matching. 
Any point in P can be written as 

where AM 2 0 and EMAM = 1. Clearly, x can be a vertex only if we 
have exactly one AM = 1. We will show that all such vectors are indeed 
vertices. For a given M ,  consider the hyperplane 

where n = IVI (an even number). Note that every perfect matching has 
exactly 5 edges. Then for any x E P, 

because 0 5 xe 5 1. Equality can hold only if Ve E M;xe = 1 but then x 
is the characteristic vector of M. Therefore P n  H M  = { x M )  which proves 
it is a vertex. 

The optimum of zewese can be assumed to be a vertex X M  which means 
that for any other perfect matching MI, w(M1) 2 w(M). 

(b) 	Suppose now that we can decide (via linear programming or some 
other way) whether Pn{x : wTx 5 A )  is empty or not, for any given 
X (remember all weights we are integers). Show that by calling 
an algorithm for this decision problem a polynomial number of 
times (in the size of the input, i.e. IVI, I E I and log(w,,,)), we can 
find the weight of the minimum-weight perfect matching. 
We can find the minimum weight by binary search. If the graph has n 
vertices and maximum edge weight w,,,, the maximum possible weight 
of a perfect matching is inw,,,. For any X E [O; inw,,,], we are able to  
test whether there exists a perfect matching of weight a t  most X (that's 
exactly when Pn{x : wTx 5 A )  # a)). The weights are integers, so we can 
pinpoint the smallest such X in O(log(nw,,,)) steps. 

(c) 	With the same assumptions as in the previous part, can you also 
find a minimum-weight perfect matching (not just its weight, but 
also which edges are in it) in polynomial time? (There might be 
several perfect matching having the same minimum weight, but 



here you need to produce only one of them. Also, the algorithm 
does not need to be extremely efficient, just polynomial.) 

For any edge, we can determine if we need it for the optimal perfect match- 
ing. First, find the minimum weight W*. Then pick an edge el, remove 
it from the graph and test if there is still a perfect matching of weight 
W*. If yes, we don't need edge el and we continue on the graph G \ {el). 
Otherwise we know that el appears in any optimal perfect matching, so 
we remember it, remove its two vertices from the graph, and continue on 
the remaining graph with modified optimum weight W' = W* -w(el). In 
I E 1 steps, we determine the optimal perfect matching. 

Due to Jack Edmonds, the perfect matching polytope can be de- 
scribed by the following inequalities: 

(d) Show that every vector in P satisfies the above inequalities. 

Suppose x is the characteristic vector of a perfect matching. Then the first 
two inequalities are satisfied by definition. For the last inequality, consider 
and odd-size subset W c V. All vertices of W cannot be covered by edges 
inside W because these edges cover disjoint pairs of vertices. At least one 
vertex must be covered by an edge e E 6(W) and therefore 

Since these inequalities are valid for the vertices of P, they are also valid 
for any point inside P. 

Take the other implication for granted (every vector satisfying these 
inequalities is in P). 

(e) 	How many inequalities do we have in this complete description 
of P? Can we just use any polynomial-time algorithm for linear 
programming to optimize over P? 
Unfortunately, the third condition generates 2 " ~ ~inequalities (one for each 
odd subset, the same equality for W and V \ W). Therefore a straightfor- 
ward linear programming approach would be very inefficient (not polyno- 
mial in n, the number of vertices, and log w,,,). 



(f) 	Show how we can use the ellipsoid method to decide if there exists 
a perfect matching of weight at most X in polynomial time. How 
would you select the initial ellipsoid? How would you take care 
of the equality constraints in the description of P ?  When can 
you stop? 
By adding the inequality wTx 5 A, we get a polytope PAwhich is nonempty 
exactly if there exists a perfect matching of weight at most A. 
The ellipsoid algorithm can be used to test whether PA= 0 whenever we 
can: 

a find a suitable bounding ellipsoid to start with, 


a have a polynomial-time separation oracle, and 


a estimate the minimum volume of PA,if it's nonempty. 


The bounding ellipsoid here is simple. We can take for example the sphere 
with center in the origin and radius fl.This contains all characteristic 
vectors of perfect matching. 

If a point x doesn't lie in PA,it's because it violates some of the conditions. 
The condition wTx 5 X is easy, as well as the first two inequalities in the 
description of P .  The third inequality seems to require an exponential 
number of inequality checks but here's where Problem 1comes into play. 
For a given x,  we can calculate in polynomial time 

because this is just a min-V-odd-cut problem. Then we check whether 
y(x) 2 1. In case y(x) < 1,we can report that x violates the inequality for 
W where S(W)is the minimum V-odd cut. Otherwise, we are guaranteed 
that no such cut exists. 

Finally, we have to make sure that PAhas some volume so we know when 
to stop. We do this by employing the theorem given in class (theorem 2 of 
the scribe notes of lecture 5) which states that {x : Ax 5 b )  is nonempty 
if and only if {x : Ax 5 b+ ~ e )is nonempty as well, where E can be chosen 
as 2-L. The value L as defined in class involves the number of rows as 
well, which is enormous, but this is not needed here. We can simply redo 
the proof more carefully. We have to consider a vertex of y 2 0, AT = 0, 

and bTy = -1, where the matrix ( t: ) has entries all 0 and I except for 

one column containing wj's and X (which can be assumed to be at most 
mw,,,). Most of the entries of such a basic feasible solution y will be 0, the 
ones that are non-zero (basic, and thus at most m of them) will be at most 
m!mw,,. Hence, following the proof of Theorem 5, we can choose E to be 



1 
say 2m!m2~,,, = 2-Q with Q = O(m log rn + log w,,,), which happens to 
be polynomial in rn and log w,,,. Therefore we replace each equality by a 
pair of inequalities and increase the right-hand size by E = 2-Q. We have 
to slightly modify our separation algorithm (since now we are separating 
over this slightly modified polytope) but this is trivial since we simply 
compare the value of the minimum V-odd-cut to 1- & instead of 1. In 
summary, this guarantees that we can stop after a polynomial number of 
steps (0(m2Q)= 0(m3 log rn +m2 log w,,,) ) and either find a point in P' 
or declare it empty. 


