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18.415/6.854 Advanced Algorithms 

Problem Set Solution 6 
Lecturer: Michel X.  Goemans 

1. The betweenness problem is defined as follows: We are given n and a set T of m 
triples of the elements of (1,. .. ,n). We say that an ordering 7r of (1,.. . ,n) satisfies 
a triple (i,j, k), if j is between i and k in n. (For example, the ordering (5,3,1,2,4) 
satisfies the triples (5,1,2) and (1,3,5),but not (3,2,1)). The question is to find an 
ordering of (1, . . .,n) that satisfies the maximum number of triples in T. 

This problem is known to be NP-hard, even if we restrict to instances for which 
an ordering that satisfies all the triples exist. 

(a) Use randomization to find a simple ;-approximation algorithm for this prob- 
lem. Prove the correctness of your algorithm. 

Let 7r be an ordering of (1,.. . ,n) chosen from the set of all such orderings uniformly at  
random. For every fixed triple (i, j, k) in T ,  the ordering n induces a random ordering 
on the elements i ,  j ,  k. Therefore the probability that 7r satisfies this triple is the same as 
the probability that the induced ordering is one of (i, j ,  k) and (k, j ,  i).  Thus, 7r satisfies 
any fixed triple in T with probability 113. Therefore, by the linearity of expectation, a 
random ordering satisfies $IT[triples. Since IT1 is an upper bound on the number of 
triples that can be satisfied, the algorithm that outputs a random ordering of (1,.  .. ,n) 
is a ;-approximation. 

(b) Use the method of conditional expectations to derandomize your algorithm. 

We want to find an ordering nl ,7r2, .. . ,n, that satisfies at least one third of the triples. 
The idea is to pick a value for Ti that maximizes the conditional expectation of the num- 
ber of satisfied triples assuming the choices that we have already made for TI , .  .. ,ni-1 
(The expectation is over the random choice of the rest of the ordering). Here's the sketch 
of the algorithm: 

for i := 1t o n  do 

mas := 0; 

for j := 1t o n  do 


if j $ {nl, 7r2,. . .,ni-1) then 
E := Exp( number of satisfied triples I 

The first i elements of the ordering are TI, n2, .. .,xi-1, j ) ; 
if E > mas then 


rnaz := E; 

7ri := j; 


endfor 

endfor 


To compute the conditional expectations of the number of satisfied triples assuming that 
the first i elements of the ordering are 7r1, ~ 2 , .. .,xi-1, j ,  we use the following algorithm: 
We divide the triples (q, r,s) of T into three categories: 



I{q,r,s) n { ~ 1 , ~ 2 , . . . , ~ i - l , j ) l> 2: 
In this case the probability that the triple is satisfied is either 0 or 1, because the 
status of the triple is completely determined and does not depend on future choices. 
Let ml  be the number of triples in this category which are satisfied. 

I { Q , ~ , s ) ~ {nl ,n2, . . - ,ni- l , j ) l  = 1: 
In this case, if {q,r, s)  n{r l ,  7r2, ... ,ri-1,j) = {r), the probability that the triple is 
satisfied is 0, otherwise, this probability is $. Let m2 be the number of triples (q,r, s) 
in this category for which { q ,r, s)  fl{nl, n2,. .. ,7ri-1, j )  # {r). 

I { Q , ~ , s )  n { ~ 1 , ~ 2 ,- .- ,ni-i , j)l  = 0: 
For every triple in this category, the probability that it is satisfied is exactly Q. Let 
ms be the number of triples in this category. 

By the linearity of expectation, the conditional expected value of the number of satisfied 
triples is exactly ml  + 7+ y.Furthermore, for a given sequence n l ,  n2, . ..,ni-1, j, 
one can easily compute the values of ml ,  ma, ms. Therefore, the above algorithm can be 
implemented efficiently. 

(c) Assume there is an ordering that satisfies all the triples in T. Prove that there 
are vectors ul, .. .,vn E Rn such that 

for all i # j ,  
for all (i,j, k) E T 

Consider an ordering n1, 7~2,...,nn that satisfies all the triples. Therefore if ai denotes the 
position of i in this ordering, then for every triple (i,j,  I c )  E T ,  (ai-aj)(ak-aj)< 0. Let 
the vector vi be the vector that has ai in its first coordinate and 0 elsewhere. Therefore, 
(vi-2rj)(uk-uj) = ( ~ i - ~ j ) ( ~ k - ~ j )< 0. Also, for everyi # j, llui-ujll = lai-a.13 -> I. 
Therefore, U ~ ' S  constitute a feasible solution for the program (1). 

Show how we can find such vl, .. . ,u, using semidefinite programming. 

Let Y be an n x n matrix defined by 

We know that such a matrix is positive semidefinite. Conversely, for every positive 
semidefinite matrix Y, we know how to find ui's satisfying (2). The constraints I lui -vj 1 1 > 
1 and ( ~ i- u ~ ) ( u ~- ~ j )5 0 can be written in terms of Y as yii + Y j j  - 2yij > 1 and 
Yik +yjj -yij -yjk < 0. Therefore, program (1) is equivalent to the following semidefinite 
program. (Here we only need a feasible solution, so we can take an arbitrary function as 
the objective function). 

for all i # j, 
for all ( i ,j ,  k) E T 



(d) 	Give an example where the program (I)is satisfiable, but there is no ordering 
that satisfies all the triples in T. 

Let n = 4 and T = {(1,2,3), (2,3,4), (3,4,1)). Assume there is an ordering of {1,2,3,4) 
satisfying the triples in T.  We may assume, without loss of generality, that 1comes before 
2 in this ordering. Therefore, since the triple (1,2,3) is satisfied, 3 must come after 2, 
and since the triple (2,3,4) is satisfied, 4 must come after 3. Therefore, the ordering does 
not satisfy the triple (3,4,1). This shows that the above instance is not satisfiable. 
Now, let vi's be defined as follows: 

It is easy to verify that vl ,v2, VQ,vq is a feasible solution to the program (1). 

(e) 	Assume that vl , . . . ,v, E Rn is a solution of the program (1). Choose r uni-
formly at random from {p E Rn : 1 lpll = 11, and consider the ordering obtained 
by sorting the elements of {I,. . . ,n }  with respect to their rTvi value. Show 
that in expectation this ordering satisfies at least half the constraints in T. 

We prove that in the ordering that is obtained by sorting rTvi's, the probability that 
any fixed triple in T is satisfied is at least 112. This, by the linearity of expectation 
implies that the expected number of satisfied triples is at least +T. Therefore, what we 
need to prove is that for every triple (i, j ,  k) E T ,  if we pick r at random, then with 
probability at least 112, we either have r.v; < r.vj < r.vk or r.vk < r.vj < r.vi. In other 
words, we need to prove that with probability at least 112, r.vi - r.vj = r.(vi - vj) and 
r.vk - r.Vj = r.(vk - vj) have different signs. Let z := vi - vj and y := vk - vj. In 
other words, we would like to compute the probability that the hyperplane normal to 
r separates x from y. In class, we have seen that this probability is equal to the angle 
between x and y divided by 27r. Since this angle is at least n/2 because of the program 
(I),we are done. 

Consider the following scheduling problem. We are given n jobs that are all 
available at time 0 and that can be processed on any of rn machines. Each job 
has a processing time p j  which represents the amount of time a machine (any one 
of them) needs to process it (without interruption). A machine can only process 
one job at a time. This scheduling problem is to assign each job to a machine 
and schedule the jobs so as to minimize CjpjCj where Cj represents the time at 
which the processing of job j completes. (For example, if we have 5 jobs of unit 
processing time and 3 machines, there are many ways of obtaining an objective 
function value of 1+ 1+ 1+ 2 + 2 = 7.) 

(a) Show that the problem is equivalent to minimizing EL1M: where Mi is the 
total amount of processing time assigned to machine i. 

Consider a solution SOL, and let ail, ai2,. . . ,ail, be the list of jobs that are scheduled 
on the i'th machine in this solution. We have 



Therefore, 

Therefore, since Cjp; does not depend on SOL, minimizing CjpjCj is equivalent to 
minimizing CzlM; . 

(b) Let L = A Cjpj  be the average load of any machine. Show that any optimum 
solution for C:=, Mf will be such that each machine i either satisfy Mi < 2L 
or processes a single job j with p j  > 2L. 

Consider an optimum solution SOL and assume there is a machine i with Mi > 2L that 
processes more than one job. Let j be the shortest job running on this machine. By the 
definition of L, there is a machine k with Mk < L. Now, consider the solution SOL' that 
is obtained from SOL by running job j on the machine k instead of the machine i. If M: 
denotes the total amount of processing time assigned to machine i in SOL', we have 

Therefore, 

But since j is the shortest job on machine i ,  we have p j  < Mi/2, and therefore, p j  -Mi + 
Mk 5 -Mi12 + Mk < -2L/2 + L = 0. Thus, C ~i~ is smaller than C Mf,  which is a 
contradiction with the assumption that SOL is optimal. 

(c) 	Assume that p j  2 a L  for some constant a > 0 for every job j, and assume that 
all pj's can only take k different values, where k is a fixed constant. Design a 
polynomial- time algorithm for this case. 

We use dynamic programming to solve this problem. Let fm(nl, n2,. .. ,nk)  denote the 
minimum value of CM; for scheduling n l  jobs with processing time pl ,  n2 jobs with 
processing time p2, .. ., and nk jobs with processing time pk on m machines. The number 



of such subproblems is at most mn" which is a polynomial in n and m. Now we only 
need to find a recurrence for computing the values of fm (nl, n2, . . . ,nk).  
Since pj's are at least a L  and each machine i either processes only one job, or processes 
more than one job with total processing time at most 2L, therefore in any optimal solution, 
the number of jobs on each machine is at most 2/a. Assume that in an optimal solution 
machine rn processes r j  jobs of processing time pj,  for j = 1,.. . ,k .  By the above 
argument, xizlrj 5 2/a. Also, by the definition of f ,  the value of the solution is 

(Cj,l 
k rjpj)2+ fm-1 (nl -r l ,  n2 - r2, . . .,nk -r k )  On the other hand, for every sequence 

?' E R = {(rl , . .. ,r r  ) : zFZ1 5 ni for every i , there is a solution of cost ri 5 2/a)  with 
k(Cjzl + fm-l ( i i  -3- Thus, 

The size of R is at most (2/a)< which is a constant. Therefore, we can use the above 
recurrence to compute fm (n') in constant time given the values of frn-1 (G-F). For the base 
case, it is clear that f1(G) = (Cjnjpj)2. Therefore, we can use dynamic programming 
to solve the problem in polynomial time. 

(d) Assume that p j  > a L  for some constant a > 0 for every job j. Design a 
polynomial-time approximation scheme for this case. 

Let I denote the instance of the problem that is given as the input. First, for every job 

j with a processing time greater than 2L, we assign a machine to process this job (and 

no other job). Then we solve the problem recursively for the set of remaining jobs and 

remaining machines. By part (b), we know that assigning a job with processing time 

more than 2L to a machine that only processes this job does not increase the value of the 

optimum. Therefore, we are not losing any approximation factor here. 

Now, we know that for every j, a L  5 p j  5 2L. We define pi as follows: pi := min{ (1 + 

E ' ) ~: (1 + E ' ) ~> pj}, where E' is such that (1 + E ' ) ~5 (1+ E) and, say, greater than 

1+ ~ / 2 .  In other words, pi is the smallest power of (1 +E' )  greater than pj. Let I' denote 

the instance of the problem with pj's instead of pj's. It is clear form the definition that 

p j  5 p j  5 (1+ &')pj. Also, since all pj's are between a L  and 2L, pj's can take at most 

k := log(,+

&.I
, (2/a) + 1= O(1) values. Therefore, using the algorithm in part (c), we can 


find the optimal solution SOL' for I' in polynomial time. 

Now consider an optimal solution SOL of cost O P T  for I, and evaluate it as a solution 

to It. Since for each j ,  the new value of Cj with respect to pi's is at most (1 + E') 

times its value with respect to pj's, therefore the cost of SOL with respect to pj's is at 

most (1+ E')~OPT5 (1+ &)OPT. This shows that there is a solution of cost at most 

(1 +&)OPT for I t .  Therefore, the cost of SOL with respect to pj's is at  most (1 +&)OPT. 

However, since pi 2 p j  for every j, the cost of SOL with respect to pj's is upper bounded 

by its cost with respect to pi's, which is at most (1 + &)OPT. 



