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18.415/6.854 Advanced Algorithms 

Problem Set Solution 5 
Lecturer: Michel X.  Goemans 

1. Consider the linear programming relaxation of the vertex cover problem seen in 
class. 

Min C wixi 

subject to: 

(a) Argue that any basic feasible solution x of the above linear program must 
satisfy xi E 10, $,1) for all vertices i E V. 
 
Hint: given a bfs x ,  consider the vector y defined by yi = xi if xi E (0, I) ,  and 
 
yi = 0.5 otherwise. 
 

Let x be a basic feasible solution. We follow the hint and let y be defined by yi = xi if 
X i  E (0, I), and yi = 0.5 otherwise. Let A be the matrix of coefficients of the constraints 
xi + xj > 1. F'rom problem 1 on the linear programming problem set we know that we 
can find a matrix A: such that, 

i. 	A: is a square, invertible submatrix of A. 
ii. If 	J is the set of indices of non-zero components of x then A:XJ = b' where b' is a 

vector of all 1's. 

By construction J is the set of indices of non-zero components of y. An equation contained 
in A:XJ = b' is either of the form xi + xj = 1or else it is of the form xi = 1. In the 
first case since i,QE J we have X i  > 0 and xj > 0. This implies that both xi and xj are 
strictly less than 1and so yi = yj = 0.5. Hence yi + yj = 1. In the second case we have 
yi = 1since X i  = 1. We have therefore shown that A:yJ = br. But A: is an invertible 
matrix and so X J  = y~ + x = y. i.e., xi E {O, i ,  1)  for all vertices i E V. 

(b) 	To solve the linear program to optimality, we can therefore restrict our at- 
tention to solutions satisfying xi E {0,0.5,1). For this purpose, consider the 
bipartite graph obtained by introducing two vertices say ai and bi for every 
vertex i, both of weight wi, and having edges (ai ,  b j )  and ( a j ,  bi) for every edge 
( i ,j) of the original graph. Show that the minimum weight of any vertex cover 
in this bipartite graph is exactly equal to twice the value of the above linear 
program. Also, how can you extract the solution of the L P  from the vertex 
cover in the bipartite graph and vice versa? 

Let x* be an optimal solution to the linear program satisfying xf E {O, i,1). We form a 
subset S of the nodes in the bipartite graph as follows. If x: = 1then both ai and bi are 
put into S. If x f  = $ then ai but not bi is put into S. If xf = 0 then neither ai nor bi is 
put into S. The set S is a vertex cover of the bipartite graph since, 

i. 	(i,j )  E E + x f  + x j  2 1. 
ii. 	xf = l+a i ,b i  E S. 



iii. x i  = X:3 = + a i , a j  E S. 

Conversely, given a vertex cover T of the bipartite graph we can obtain a feasible solution 
y to the linear program by setting yi = 0 if neither ai nor bi is in T ,  yi = if exactly one of 
them is in T and yi = 1if both are in T. By construction the weight of S is CiEvwi(2x;) 
and the weight of T is CiEVwi(2yi). This implies that S is a minimum weight vertex 
cover since xiEv wigi Hence the minimum weight of any vertex cover in wixf 5 xiEV 
the bipartite graph is exactly equal to twice the value of the linear program. The above 
constructions show how to obtain the solution of the LP from the vertex cover in the 
bipartite graph and vice versa. 

(c) 	Show that the problem of finding a minimum weight vertex cover in a bipartite 
graph can be solved by a minimum cut computation or a maximum flow 
computation in a related graph. 

Let V = A UB be the partition of vertices associated with the bipartite graph. We first 
of all direct all edges from A to B. We also add a source node s which we connect to each 
node in A and a sink node t which we add to each node in B. If i E A then the edge (s, i )  
is given capacity wi. If j E B then the edge (j,  t )  is given capacity wj. All of the original 
edges are given infinite capacity. Suppose that S is a vertex cover in the bipartite graph. 
Consider the set C = (A -S)U (B  nS)U{s) and its associated cut (C, C). An edge (i, j) 

j 6S contradicting the fact that S is a vertex cover. An edge (s, i )  is in S(C) if and only 
if i E S and an edge (j,  t ) is in 6(C) if and only if j E S and so the value of the cut is the 
same as that of the vertex cover. Conversely, suppose that (C,C)  is a cut of finite weight. 
Let S = (A - S)U (B  n S).  Suppose that (i, j) is an edge in the bipartite graph such 
that i ,  j $? S.  Then i E C and j E C which means that (i, j) E S(C). This contradicts 
the fact that (C, C )  is a cut of finite weight. Hence S is a vertex cover of the bipartite 
graph. It can easily be seen that the weight of the vertex cover is the same as that of the 
cut. Hence we can find a minimum weight vertex cover in a bipartite graph by finding 
a minimum cut (C, 6) and setting S = (A - S)U (B  n S).  (By the max-flow min-cut 
theorem we could find the vertex cover by first solving a maximum flow problem.) 

2. 	Consider the 2-approximation algorithm seen in class for the generalized Steiner 
tree problem (we are given a set T of pairs of vertices and cost on the edges of 
a graph, and the goal is to find a subgraph (a forest) of minimum cost in which 
every pair of vertices in T is connected). 

(a) 	Argue that this problem is a generalization of the minimum spanning tree 
problem. 

Let T be the set of all pairs of the vertices of the graph. It is obvious that any minimal 
subgraph that connects every pair of vertices in T is a minimum spanning tree. 

i. Does the algorithm seen in class produce a minimum spanning tree in that 
case? If so, prove it; if not, give a counterexample. 

The algorithm from class does produce a minimum spanning tree in this case. We 
first prove the following claim about the order in which the algorithm adds edges to 
the subgraph. 

Claim 1 I n  each step, the algorithm adds the edge of least cost that connects any 
two connected components. 

andS $! of infinite capacity cannot be a member of S(C) since that would mean that i 



Proof: By the definition of T ,  throughout the algorithm, every connected compo­
nent C E C is in F. Therefore, in each step we increase the value of d(i) for every 
vertex in the graph by the same amount. Thus, all vertices have the same value of 
d(i) at any time during the execution of the algorithm. Now, notice that in each step, 
we pick an edge ij with i E C,, j E C,, p # q, that minimizes (cij - d(i) - d(j))/2, 
or equivalently, minimizes cij. 
By the above claim, our algorithm adds the edges to the subgraph in the same or­
der as Kruskal's minimum spanning tree algorithm. Therefore, by the optimality of 
Kruskal's algorithm (see, for example, Introduction to Algorithms by Cormen, Leis­
erson, and Rivest), and considering the fact that by the definition of T the second 
phase of the algorithm doesn't change the subgraph, the algorithm outputs a rnini­
mum spanning tree of the graph. 

ii. Is the value 	( C s  ys) of the dual solution y constructed equal to the min­
imum spanning tree value? If so, prove it; if not, give a counterexample. 

Consider the graph G in the following figure. 

It is easy to see that the dual solution y constructed by the algorithm has y{,) = 
Yja}  = y{,} = 112, and ys = 0 for every S # { a ) ,{b}, { c } .  Therefore, the value of 
the dual solution is 312, whereas the minimum spanning tree has cost 2. 

(b) 	Argue that this problem is a generalization of the shortest s-t path problem 
(in an undirected graph with nonnegative edge weights). 

It is easy to see that the shortest s-t path problem is equivalent to the generalized Steiner 
tree problem with T = {(s,t)}. 

i. Does the algorithm seen in class produce a shortest 	s-t in that case? If 
so, prove it; if not, give a counterexample. 

ii. Is the value ( C s  ys) of the dual solution y constructed equal to the shortest 
path value? If so, prove it; if not, give a counterexample. 

We prove that the cost of the path F' that the algorithm produces is equal to the value 
( C s  ys) of the dual solution y that it constructs. Since the value of y, and the cost of F' 
are lower and upper bounds for the value of the shortest s-t path, we conclude that the 
answer to both of the above questions is positive. 
It just remains to prove CSEFys = CetF,Ce. We proved in the class that 

It is clear from the description of the algorithm that throughout the algorithm (before 
the end of the while loop), C contains only two connected components, one containing 
s and the other one containing t. Both of these connected components C must satisfy 
IF' nS(C)I = 1, for otherwise there must be a cycle in F .  This implies that for every set 








