
MIT OpenCourseWare
http://ocw.mit.edu

6.854J / 18.415J Advanced Algorithms
Fall 2008��

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

18.415/6.854 Advanced Algorithms

Problem Set Solution 5
Lecturer: Michel X. Goemans

1. Consider the linear programming relaxation of the vertex cover problem seen in
class.

Min C wixi

subject to:

(a) Argue that any basic feasible solution x of the above linear program must
satisfy xi E 10, $,1) for all vertices i E V.

Hint: given a bfs x , consider the vector y defined by yi = xi if xi E (0, I) , and

yi = 0.5 otherwise.

Let x be a basic feasible solution. We follow the hint and let y be defined by yi = xi if
X i E (0, I), and yi = 0.5 otherwise. Let A be the matrix of coefficients of the constraints
xi + xj > 1. F'rom problem 1 on the linear programming problem set we know that we
can find a matrix A: such that,

i. 	A: is a square, invertible submatrix of A.
ii. If 	J is the set of indices of non-zero components of x then A:XJ = b' where b' is a

vector of all 1's.

By construction J is the set of indices of non-zero components of y. An equation contained
in A:XJ = b' is either of the form xi + xj = 1or else it is of the form xi = 1. In the
first case since i,QE J we have X i > 0 and xj > 0. This implies that both xi and xj are
strictly less than 1and so yi = yj = 0.5. Hence yi + yj = 1. In the second case we have
yi = 1since X i = 1. We have therefore shown that A:yJ = br. But A: is an invertible
matrix and so X J = y~ + x = y. i.e., xi E {O, i , 1) for all vertices i E V.

(b) 	To solve the linear program to optimality, we can therefore restrict our at-
tention to solutions satisfying xi E {0,0.5,1). For this purpose, consider the
bipartite graph obtained by introducing two vertices say ai and bi for every
vertex i, both of weight wi, and having edges (ai , b j) and (a j , bi) for every edge
(i ,j) of the original graph. Show that the minimum weight of any vertex cover
in this bipartite graph is exactly equal to twice the value of the above linear
program. Also, how can you extract the solution of the L P from the vertex
cover in the bipartite graph and vice versa?

Let x* be an optimal solution to the linear program satisfying xf E {O, i,1). We form a
subset S of the nodes in the bipartite graph as follows. If x: = 1then both ai and bi are
put into S. If x f = $ then ai but not bi is put into S. If xf = 0 then neither ai nor bi is
put into S. The set S is a vertex cover of the bipartite graph since,

i. 	(i,j) E E + x f + x j 2 1.
ii. 	xf = l+a i ,b i E S.

iii. x i = X:3 = + a i , a j E S.

Conversely, given a vertex cover T of the bipartite graph we can obtain a feasible solution
y to the linear program by setting yi = 0 if neither ai nor bi is in T , yi = if exactly one of
them is in T and yi = 1if both are in T. By construction the weight of S is CiEvwi(2x;)
and the weight of T is CiEVwi(2yi). This implies that S is a minimum weight vertex
cover since xiEv wigi Hence the minimum weight of any vertex cover in wixf 5 xiEV
the bipartite graph is exactly equal to twice the value of the linear program. The above
constructions show how to obtain the solution of the LP from the vertex cover in the
bipartite graph and vice versa.

(c) 	Show that the problem of finding a minimum weight vertex cover in a bipartite
graph can be solved by a minimum cut computation or a maximum flow
computation in a related graph.

Let V = A UB be the partition of vertices associated with the bipartite graph. We first
of all direct all edges from A to B. We also add a source node s which we connect to each
node in A and a sink node t which we add to each node in B. If i E A then the edge (s, i)
is given capacity wi. If j E B then the edge (j, t) is given capacity wj. All of the original
edges are given infinite capacity. Suppose that S is a vertex cover in the bipartite graph.
Consider the set C = (A -S)U (B nS)U{s) and its associated cut (C, C). An edge (i, j)

j 6S contradicting the fact that S is a vertex cover. An edge (s, i) is in S(C) if and only
if i E S and an edge (j, t) is in 6(C) if and only if j E S and so the value of the cut is the
same as that of the vertex cover. Conversely, suppose that (C,C) is a cut of finite weight.
Let S = (A - S)U (B n S). Suppose that (i, j) is an edge in the bipartite graph such
that i , j $? S. Then i E C and j E C which means that (i, j) E S(C). This contradicts
the fact that (C, C) is a cut of finite weight. Hence S is a vertex cover of the bipartite
graph. It can easily be seen that the weight of the vertex cover is the same as that of the
cut. Hence we can find a minimum weight vertex cover in a bipartite graph by finding
a minimum cut (C, 6) and setting S = (A - S)U (B n S). (By the max-flow min-cut
theorem we could find the vertex cover by first solving a maximum flow problem.)

2. 	Consider the 2-approximation algorithm seen in class for the generalized Steiner
tree problem (we are given a set T of pairs of vertices and cost on the edges of
a graph, and the goal is to find a subgraph (a forest) of minimum cost in which
every pair of vertices in T is connected).

(a) 	Argue that this problem is a generalization of the minimum spanning tree
problem.

Let T be the set of all pairs of the vertices of the graph. It is obvious that any minimal
subgraph that connects every pair of vertices in T is a minimum spanning tree.

i. Does the algorithm seen in class produce a minimum spanning tree in that
case? If so, prove it; if not, give a counterexample.

The algorithm from class does produce a minimum spanning tree in this case. We
first prove the following claim about the order in which the algorithm adds edges to
the subgraph.

Claim 1 I n each step, the algorithm adds the edge of least cost that connects any
two connected components.

andS $! of infinite capacity cannot be a member of S(C) since that would mean that i

Proof: By the definition of T , throughout the algorithm, every connected compo­
nent C E C is in F. Therefore, in each step we increase the value of d(i) for every
vertex in the graph by the same amount. Thus, all vertices have the same value of
d(i) at any time during the execution of the algorithm. Now, notice that in each step,
we pick an edge ij with i E C,, j E C,, p # q, that minimizes (cij - d(i) - d(j))/2,
or equivalently, minimizes cij.
By the above claim, our algorithm adds the edges to the subgraph in the same or­
der as Kruskal's minimum spanning tree algorithm. Therefore, by the optimality of
Kruskal's algorithm (see, for example, Introduction to Algorithms by Cormen, Leis­
erson, and Rivest), and considering the fact that by the definition of T the second
phase of the algorithm doesn't change the subgraph, the algorithm outputs a rnini­
mum spanning tree of the graph.

ii. Is the value 	(C s ys) of the dual solution y constructed equal to the min­
imum spanning tree value? If so, prove it; if not, give a counterexample.

Consider the graph G in the following figure.

It is easy to see that the dual solution y constructed by the algorithm has y{,) =
Yja} = y{,} = 112, and ys = 0 for every S # { a) ,{b}, { c } . Therefore, the value of
the dual solution is 312, whereas the minimum spanning tree has cost 2.

(b) 	Argue that this problem is a generalization of the shortest s-t path problem
(in an undirected graph with nonnegative edge weights).

It is easy to see that the shortest s-t path problem is equivalent to the generalized Steiner
tree problem with T = {(s,t)}.

i. Does the algorithm seen in class produce a shortest 	s-t in that case? If
so, prove it; if not, give a counterexample.

ii. Is the value (C s ys) of the dual solution y constructed equal to the shortest
path value? If so, prove it; if not, give a counterexample.

We prove that the cost of the path F' that the algorithm produces is equal to the value
(C s ys) of the dual solution y that it constructs. Since the value of y, and the cost of F'
are lower and upper bounds for the value of the shortest s-t path, we conclude that the
answer to both of the above questions is positive.
It just remains to prove CSEFys = CetF,Ce. We proved in the class that

It is clear from the description of the algorithm that throughout the algorithm (before
the end of the while loop), C contains only two connected components, one containing
s and the other one containing t. Both of these connected components C must satisfy
IF' nS(C)I = 1, for otherwise there must be a cycle in F . This implies that for every set

