MIT OpenCourseWare
http://ocw.mit.edu

6.854J / 18.415J Advanced Algorithms
[Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

18.415/6.854 Advanced Algorithms

Problem Set Solution 4

Lecturer: Michel X. Goemans

1. In class, we have seen Klein’s cycle cancelling algorithm for the Min Cost Circu-
lation Problem (MCCP). This algorithm requires O(mCU) iterations in the worst
case, i.e., its running time is not polynomial in m, logC and logU. In this problem,
we will see how to apply the idea of cost scaling on this algorithm to obtain an
algorithm whose running time is polynomial in m, logC, and U.

(In fact, it is possible to apply the same idea on both costs and capacities to obtain
an algorithm whose running time is polynomial in m, logU and logC, but this is
not required in this problem.)

Recall that in MCCP, a bidirected graph G = (V,E), an anti-symmetric cost
function ¢ : E — Z, and a capacity function v : £ — Z are given. Let n and
m denote the number of vertices and edges in G, U = max(, y)cp [u(v,w)|, and
C = max(y,w)er |c(v,w))|.

(a) For every integer i, define the cost function ¢! : E + Z as follows:

c{”(v, w) = sgn(c(v,w)) \-|c(u27‘w)|J ;

where sgn(z) is the sign of z. Notice that by the above definition, ¢* (v, w) =
c(v,w) and 98D (4 w) = 0. Our objective is to find a way to solve MCCP
for the cost function ¢(?), given its solution for ¢i*1),

Let f be an optimum circulation for G with the cost function ¢*!) and the
capacity function u. Prove that if we apply Klein’s cycle cancelling algorithm
on G with the cost function ¢! and capacity function u, starting from the
circulation f, then the number of iterations of this algorithm is O(mU).

Since f is an optimum circulation for G with the cost function ¢it!), by the theorem
that was proved in the class, there must be a potential function p, such that for every
edge (v,w) in the residual graph Gy, ¢ (v,w) = (D (v, w) + p(v) — p(w) > 0. By
the definition of ¢!V, for every edge (v, w), ¢'¥ (v, w) is equal to 2¢("+1) (v, w) plus one of
the numbers —1, 0, or 1. Therefore, for every edge (v, w) in Ej,

0(22 (v, w) = ¢! (v, w) — 2¢V (v, w) + 2 (f-‘(H”(Us w) + p(v) — P('w)) ==1. (1)

We know that for every cycle (flow, resp.), the cost of the cycle (flow, resp.) is the same

with respect to ¢!¥) and cég. Therefore, if we replace the cost function ¢! with the cost
(i)
2p .
works with ¢¥), and outputs the same result. Therefore, we consider the cost function
c5) instead of ¢(?). Let f* be the optimal circulation for cé‘p} and consider the circulation
f" == f*— f. By the definition of the residual graph, f'is a circulation in Ey. Therefore,

the cost of f' is at least

function c¢;,, Klein’s cycle cancelling algorithm works in exactly the same way that it

Z c.(z;}(v,w)f’(v, w) > —2mU,
(v,w)eE)

PSS4-1

where the last inequality is a consequence of (1) and the fact that | f'(v, w)| < 2U for every
edge (v, w). Now, notice that the cost of f' is equal to the cost of f* minus the cost of
f. Therefore, the cost of f* is at most 2mU units less than the cost of f. This, together
with the fact that in every iteration of Klein’s algorithm the cost of the circulation is
decreased by at least 1, implies that the number of iterations of Klein’s algorithm is at
most 2mU.

(b) Use part (a) to obtain an algorithm for MCCP that requires O(mU logC)
iterations.

Start with the cost function ¢{'°8(C+11) (3,). For this function, the any feasible circula-
tion is an optimal circulation. Run the algorithm in part (a) for i = [log(C+1)]-1,...,0,
to compute the optimal circulation with respect to the cost function ¢!?) for every i, and
in particular the optimal circulation with respect to ¢!?) = ¢. By part (a), every step takes
at most O(mU) iterations, and therefore the total number of iterations is O(mU log C).

2. Consider a directed graph GG = (V, E) with a length function ! : E — Z and a specified
source vertex s € V. The Bellman-Ford shortest path algorithm computes the
shortest path lengths d(v) between s and every vertex v € V, assuming that G has
no directed cycle of negative length (otherwise the problem is NP-hard). Here is
a description of this algorithm:

The Bellman-Ford algorithm computes d(v) by computing di(v) = the shortest
walk! between s and v using exactly k edges. di(v) can be computed by the
recurrence

di — i dj._ l(w, i

§v) = min [dii () +1{m;v)]

Let iy(v) = k:n}in !dk(‘ﬂ). It can be shown that if the graph has no negative cycle

then h,_;(v) = d(v) for all v € V. Moreover, the graph has no negative cycle iff, for
all v, dy(v) > hn—1(v).

(You are not required to prove any of the above facts.)

(a) Let u* be the minimum average length of a directed cycle C of G, i.e.,

w(G) o

= . min #(C) = min
directed cycles ¢ c

Using the Bellman-Ford algorithm, show how to compute p* in O(nm) time.

(Hint: Use the fact that if we decrease the length of each edge by p the
average length of any cycle decreases by pu.)

Notice that if we decrease the length of each edge in the graph by p, the mean length of
each cycle in the graph is decreased by p. Therefore, p* is the largest value of p such
that if we decrease the length of each edge by pu, there will be no negative length cycle
in the graph. Also, by the definition of d;(v), if one decreases the length of each edge by
1, the effect on d;(v) is simply that it will be decreased by lu. Therefore, by the above
facts about the Bellman-Ford algorithm, p* is the largest value of p for which all the
inequalities

dn(v) —np> _min (dy(v) — k) 2)

LA walk is like a path except that vertices might be repeated.

PSS4-2

(b)

hold for every v € V. Let's compute the largest value of u that satisfies the above
inequality for a fixed v. This value is equal to the maximum over k of the largest value
of p that satisfies the inequality dp(v) — np > di(v) — kp. Therefore, for a fixed v, the

largest p that satisfies inequality (2) is maxgp—1.. n—1 L '; !:ﬁ"“’]. Thus, the largest pu

.....

that satisfies inequality (2) for every vertex v € V' is equal to

. d —d
veV k=1,....n—1 n—=~k

It is obvious that given all the values di(v) that are computed by the Bellman-Ford
algorithm, the above value can be computed in O(n?).

Can you find the cycle €' with u(C) = p* using only O(n?) additional time?
(In other words, suppose you are given all the values that the Bellman-Ford
algorithm computes. Can you find a minimum mean cost cycle using this
information in O(n?)?)

We use the following algorithm:

1. Compute the value of u* using the algorithm in part (a).

2. Subtract p* from the length of each edge. From now on, when we talk about the
length of an edge, we mean the updated length.

3. For every [l =0,...,n and every vertex v € V, compute the following values:
) = div) -l
' s . 1]
o) = i 40)

4. Find a vertex v such that b (v) = d},(v).
5. Let vg,v1,v2,...v, be a sequence of vertices defined as follows:

— g =1
— For k=0,...,n—1, vp4+1 is a vertex for which we have
dy_i(vx) = d::—(k+1)(?—’k+l) + Vg1, Vk)- (3)
6. Find i and j (i < j) such that v; = v;.
7. Output the cycle C 1= vj,v;_1,...,Vi41,¥ = ;.

We prove that the above algorithm finds the minimum mean length cycle. After step 2,
we know that a cycle of total length zero must exist in the resulting graph (and this cycle
corresponds to a cycle with the minimum mean length in the original graph). Therefore,
we only need to find such a cycle. Also, we know that there is no negative length cycle
in the graph.

After step 3, by the argument in part (a), we know that dj(v) is the length of the shortest
walk with exactly [edges from s to v, and h),(v) is the length of the shortest walk with
at most n edges from s to v.

In step 4, such a vertex v must exist, since otherwise we would have h] (v) < d) (v) for
every vertex v, and therefore we can find a small positive e such that if we subtract e from
the length of each edge, all the inequalities hl,(v) < d (v) are still satisfied. Therefore,
subtracting € from the length of each edge does not create any negative length cycle. This
is in contradiction with the fact that there is a zero length cycle in the graph.

The sequence vy, vy, Vs, ..., defined in step 5 is well-defined, because by the definition
of dj,(v) we know that for every v and k, there must be a vertex w such that di(v) =

PSS4-3

di—1 (w) + l(w,v). Also, notice that by summing Equation (3) for k =0,....n — 1, we
obtain d},(v) = dy(v,) + I(P), where [(P) is the length of the walk P := 1,051 ...010.
Therefore, since dj(w) is 0 if w = s and infinity if w # s, and d),(v) is not infinity
(this is because of the assumption that the graph is strongly connected), the equality
d;,(v) = dgy(vy,) + I(P) implies that v,, = 5 and P is a walk from s to v of length d,, (v).
Since there are only n vertices in the graph, there must be i and j (i < j) such that v; = v;.
Consider all the equalities d,_, (vx) = d:l_“ﬁ”(m,.H) + l(vpgr,vp) for k =d,....5 - 1.
By adding all these equalities together, we get dj,_;(vi) = d,_;(v;) +1(C), where I(C) is
the length of the cycle C' that is output by the above algorithm. We claim that [(C') = 0.
Suppose this claim is not true. Then we must have [(C) > 0 (Remember that there is no
negative length cycle in the graph). Therefore, v,v,—1 ... vj410jvi—1Vi—2... 79 is a walk
that uses less than n edges and its length is d},(v) —(C) < d},(v). This is a contradiction
with the assumption k], (v) = d},(v).

Therefore, the above algorithm finds the minimum mean length cycle correctly. It is
also obvious from the description of the algorithm that the running time of the above
algorithm is O(n®).

3. Suppose we have n objects that we want to store in a data structure. After storing
these objects in the data structure, we would like to perform m find operations
on the data structure. Assume that the i’th object is accessed k; > 1 times.
Therefore, Y | | ki = m. We want to evaluate the performance of the data structure
by computing the total running time of these m find queries (no other operation,
such as delete or insert, is performed on the data structure).

(a) Show that if we store the objects in a splay tree, then no matter what the
initial configuration of the splay tree is, and no matter in which order we
access the objects, the total running time of the m access operations is at

most
B m
0 (m+ ;:1 ki log(k—i)) :

We use the theorem that is proved in the class with the weight function w; = k;. With
this weight function, the theorem says that the amortized cost of accessing the i'th object
is at most 1+ r(v) — r(i), where r(v) is the credit of the root and r(i) is the credit of the
node of the tree that contains the i’th object. We know that the total weight of the tree
is "I, ki = m. Therefore, r(v) = logm. Also, r(i) = log(s(i)) > log(k;). Therefore,
the amortized cost of accessing the i’'th object is at most 1+ log(m/k;). Thus, the total
amortized cost of m accesses is at most m + Y-, ki log(m/k;). By the definition of the
amortized cost, this is equal to the total running time of m accesses, plus the total credit
in the tree after the accesses, minus the total credit in the tree that we start with. Since
in any tree the credit of the node that contains the i’th object is at least logk; and at
most logm, the total credit in the tree at any time is at least Y !, logk; and at most
n logm. Therefore, the total running time of m accesses is at most

n n mn
m+Zkilog(§)+nlogm—Zlogk; m+z(k;+1)log(%]
i=1 s i=1 !

i=1 =

0 (m +3 K 1og(ﬂ_)) ,
i=1 .

Il

PSS4-4

(b)

where the last equality follows from the fact that k; > 1 and therefore k; + 1 < 2k;.

Show that if we store the objects in a static binary search tree (i.e., a binary
search tree that does not change by a find operation), then no matter in which
order the objects are stored in the BST, and no matter in which order they
are accessed, the total running time of the m access operations is at least

0 (m + i ki 1og(§)) X
i=1 i

We use induction on n to prove that the total cost of m operations on any BST is at least
%(m + Y ki log(7+))- The induction basis is trivial. We prove the induction step as
follows: Consider an arbitrary BST and let » be the object that is in the root of the tree,
and L and R be the sets of objects that are in the left and right subtrees, respectively.
Also, let my and mpg denote)., ki and), p ki, respectively. By the definition of
BST, the left and right subtrees are BSTs. Therefore, by the induction hypothesis (and
considering the fact that the cost of accessing each element in L in our tree is one plus
the cost of accessing it in the left subtree), the total cost of the mj operations on the
elements of L is at least

1 mp,
my, + E(m;, + Z ki log(k—‘_)},
i€l
and similarly for the right subtree. Also, the cost of k.. accesses to the object r is precisely
k. Therefore, the total cost of m accesses is at least

4 1
3™ML + 52 kilog(

iel

my, 4 1 mp
W)+3mﬂ+3§k,1og(,-) + &,

Considering the facts that my + mpg + k. = m, Zieb ki = my, and ZiER ki = mp, the
above cost is lower bounded by

1 L
m+ g(mr. logmy +mpglogmpg + k. logk,) — 5;&:‘- log k;.

The function f(z) := zlog(z) is convex, therefore, 3(f(z) + f(y) + f(2)) > f(*HE=) for
every x,¥, 2z > (. Thus, the above cost is at least

m. m, 1 1 1« m
s LA Y : ke 55 s = ik
m+ 3 log(3) 3 ,-E=1 kiloghk; > (1 3 log 3)m + 3 ,-E=1 log(k‘_)

1 2 m
= - At
> glm+ X kilog(E)

This completes the proof of the induction step.

PSS4-5

