
MIT OpenCourseWare
http://ocw.mit.edu

6.854J / 18.415J Advanced Algorithms
Fall 2008��

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

18.415/6.854 Advanced Algorithms

Problem Set Solution 4
Lecturer: Michel X. Goemans

1. In class, we have seen Klein's cycle cancelling algorithm for the Min Cost Circu-
lation Problem (MCCP). This algorithm requires O(mCU) iterations in the worst
case, i.e., its running time is not polynomial in m, log C and log U. In this problem,
we will see how to apply the idea of cost scaling on this algorithm to obtain an
algorithm whose running time is polynomial in m, log C, and U .

(In fact, it is possible to apply the same idea on both costs and capacities to obtain
an algorithm whose running time is polynomial in m, logU and log C, but this is
not required in this problem.)

Recall that in MCCP, a bidirected graph G = (V,E), an anti-symmetric cost
function c : E I+ Z,and a capacity function u : E I-+ Z are given. Let n and
m denote the number of vertices and edges in G, U = max(, ,w)E~Iu(u7w)I, and
GI = ~ ~ (v , w) E EIc(u, w)I-

(a) For every integer i, define the cost function c(" : E EZ as follows:

c(') (u, W) :=sgn(c(u,w))LIc';~w)I] ,-

where sgn(x) is the sign of x. Notice that by the above definition, (u, w) =
c(u, w) and ~ (~ ~ ~ g (~ + ') l) (u ,w) = 0. Our objective is to find a way to solve MCCP
for the cost function di),given its solution for di+').
Let f be an optimum circulation for G with the cost function c(~+')and the
capacity function u. Prove that if we apply Klein's cycle cancelling algorithm
on G with the cost function di) and capacity function u, starting from the
circulation f , then the number of iterations of this algorithm is O(mU).

Since f is an optimum circulation for G with the cost function c(~+'),by the theorem
that was proved in the class, there must be a potential function p, such that for every
edge (u, w) in the residual graph Gt , cFf ') (u, w) = c(*') (u, w) + p(u) -p(w) 2 0. By
the definition of di),for every edge (u, w) , c (~)(u, w) is equal to 2c(*') (u, w) plus one of
the numbers -1, 0, or 1. Therefore, for every edge (u, w) in Ef ,

c g (u, w) = c("(u, w) - 2c("') (72, w) + 2 (c("f)(v, W) + p(u) - P(W)) 2 -1.

We know that for every cycle (flow, resp.), the cost of the cycle (flow, resp.) is the same
with respect to di)and cyi. Therefore, if we replace the cost function di)with the cost

function cy:, Klein's cycle cancelling algorithm works in exactly the same way that it
works with c(9, and outputs the same result. Therefore, we consider the cost function
c!: instead of c(9. Let f * be the optimal circulation for c;; and consider the circulation
f' := f * - f . By the definition of the residual graph, f ' is a circulation in Ef . Therefore,
the cost of f ' is at least

where the last inequality is a consequence of (1) and the fact that I f ' (u, w) 1 5 2U for every
edge (u, w). Now, notice that the cost of f ' is equal to the cost of f * minus the cost of
f . Therefore, the cost of f * is at most 2mU units less than the cost of f . This, together
with the fact that in every iteration of Klein's algorithm the cost of the circulation is
decreased by at least 1, implies that the number of iterations of Klein's algorithm is at
most 2mU.

(b) 	Use part (a) to obtain an algorithm for MCCP that requires O(mU1ogC)
iterations.

Start with the cost function ~ (~ ' * g (~ + ~) 1)(v, w). For this function, the any feasible circula-
tion is an optimal circulation. Run the algorithm in part (a) for i = rlog(C+1)l- 1,.. . ,0 ,
to compute the optimal circulation with respect to the cost function di)for every i , and
in particular the optimal circulation with respect to do)= c. By part (a), every step takes
at most O(mU) iterations, and therefore the total number of iterations is O(mU log C).

2. 	Consider a directed graph G = (V, E) with a length function 1:E +Zand a specified
source vertex s E V. The Bellman-Ford shortest path algorithm computes the
shortest path lengths d(v) between s and every vertex u E V, assuming that G has
no directed cycle of negative length (otherwise the problem is NP-hard). Here is
a description of this algorithm:

The Bellman-Ford algorithm computes d(u) by computing dk(v) = the shortest
walk1 between s and u using exactly k edges. dx(u) can be computed by the
recurrence

dk (u) = min [dk-1(w) +1(w, u)] .
(w 7 u) E E

Let hl (u) = min dk (u). It can be shown that if the graph has no negative cycle
k=17...71

then hn-1 (v) = d(v) for all u E V. Moreover, the graph has no negative cycle iff, for
all u, dn(u) > hn-1(u).

(You are not required to prove any of the above facts.)

(a) Let p* be the minimum average length of a directed cycle C of G, i.e.,

min p(C) = min x (u 7 V)EC (~ 7

directed cycles c c ICI

Using the Bellman-Ford algorithm, show how to compute p* in O(nm) time.
(Hint: Use the fact that if we decrease the length of each edge by p the
average length of any cycle decreases by p.)

Notice that if we decrease the length of each edge in the graph by p, the mean length of
each cycle in the graph is decreased by p. Therefore, p* is the largest value of p such
that if we decrease the length of each edge by p, there will be no negative length cycle
in the graph. Also, by the definition of dl (v), if one decreases the length of each edge by
p, the effect on dl(v) is simply that it will be decreased by lp. Therefore, by the above
facts about the Bellman-Ford algorithm, p* is the largest value of p for which all the
inequalities

d, (v) - n p 2 min (dk (u) - kp)
k=17...7n-l

'A walk is like a path except that vertices might be repeated.

hold for every u E V. Let's compute the largest value of p that satisfies the above
inequality for a fixed u. This value is equal to the maximum over k of the largest value
of p that satisfies the inequality d,(u) - n p 2 dk(u)- kp. Therefore, for a fixed u, the

d, 	 v -dk(v)largest p that satisfies inequality (2) is maxx,l,...,,-l (L, . Thus, the largest p
that satisfies inequality (2) for every vertex u E V is equal to

p* = min max dn (u) - dk (v)
VEV k=l,...,n-1 n - k

It is obvious that given all the values dl (u) that are computed by the Bellman-Ford
algorithm, the above value can be computed in O(n2).

(b) 	Can you find the cycle C with p(G) = p* using only O(n2) additional time?
(In other words, suppose you are given all the values that the Bellman-Ford
algorithm computes. Can you find a minimum mean cost cycle using this
informat ion in 0(n2)?)

We use the following algorithm:

1. Compute the value of p* using the algorithm in part (a).
2. Subtract p* from the length of each edge. 	 From now on, when we talk about the

length of an edge, we mean the updated length.
3. For every Z = 0, . ..,n and every vertex u E V, compute the following values:

di (u) := dl (u) -Zp*

hk (u) := min di(v)
k=l,...,n-1

4. 	Find a vertex u such that h; (u) = d;(u).
5. 	Let VO, ul,u2, . . . un be a sequence of vertices defined as follows:

- uo = u.

- For k = 0, . . . ,n - 1,vk+l is a vertex for which we have

6. 	Find i and j (i < j) such that u; = uj.
7. 	 Output the cycle C :=U j , ~ j -1 ,. ..,U i + l , U i = vj.

We prove that the above algorithm finds the minimum mean length cycle. After step 2,
we know that a cycle of total length zero must exist in the resulting graph (and this cycle
corresponds to a cycle with the minimum mean length in the original graph). Therefore,
we only need to find such a cycle. Also, we know that there is no negative length cycle
in the graph.
After step 3, by the argument in part (a), we know that df (u) is the length of the shortest
walk with exactly Z edges from s to u, and hd(u) is the length of the shortest walk with
at most n edges from s to v.
In step 4, such a vertex u must exist, since otherwise we would have hL(v) < d;(u) for
every vertex u, and therefore we can find a small positive E: such that if we subtract r: from
the length of each edge, all the inequalities h',(v) _< db(u) are still satisfied. Therefore,
subtracting 6 from the length of each edge does not create any negative length cycle. This
is in contradiction with the fact that there is a zero length cycle in the graph.
The sequence uo, vl, u2,. ..u, defined in step 5 is well-defined, because by the definition
of di(u) we know that for every u and k, there must be a vertex w such that dk(u) =

da-~(w)+t(w,v) , A b , noticethat bymmmhg Equstim c3) fork = O,...ln- l3we
obtain &(u) = + f(P)$. t l y ~ l g .~ [Q I *) whete I C P) is the fen@h ofthe walk P :=v,%-i..
~ r e I ~ c e ~ (w)b O i f w =aaaLdinffaityif w #s, and$[v) b MinfmiQ
(Mais iP of the a&ticmthat the graph is sbmngly ama&d), khe equality
&(v) =$(vn) +i (P) implies that w,, = a and P isa walk fm& a to pr d length &(v).
h~&m~dynuertice;gin&e~pb,thmm~be~andj(f
c j)ap&thatry=y.
C d d m dl the' -ties $-a(~h) =dn-[k+l)(~k+~) &t h = i,A. . * j - 1,-I-l (~ ~ + ~ ~ * ~)
By dcbg all these w d i t i w b+, we get &-d(va) =d,j(v3) +I(C), where qC) is
* I & d e b e q d e C ~ t i s o u t p u t b y t b & m ~ h . We&hthatI(C) =0.
Suppose Wclaimiclnottru~.ThawemusthaveZ(C) rO(Remember:tbert~isno
negative hgkhqdeinthegraph). T h e m h , %v-I ...vf+lvj*i-~t~a...vo b a *
t b a t w l m ~ n ~ a a d i t s I @ i s & (v) - I (C) <&(u>. ThbiaacoW&etion
with tbassumption &(v) =&(v].
Th+ret the above algorithm hds the minknm messn length cycle m r e d p , It L
dm obpigm from the decription of the algorithm that the rnnntng time of the &me
d g d t h m b Q(n=).

3, Suppaee we haven objer:bthat we waaf toatoremadab s h c t n x e , After storiag
the objects in tbe data dru&ure, we wbdd like to perform m find opdiom
on $be data e&u&uxe. Asame that the f'th object is ameaad ki 4 1 Eim~ra.
T h d o ~ ,EL,& =m. Wewant toeva2-e thep&mmamce ofthadata s t ~ p c e
by mmputbg the tow m d n g t k of these rn &ldqueries (noother operation,
~uchas delete or insert, L performed on thedata atrnetms).
(a) Show that if we Hope the object&in a splay tree, then no matter whaf the

%id configuration of the isph tree is, a d no matter hwhich order we
the objckbrs, the total mmdqg t i i of &he m amee opera ti^ is at

m08t

Weme the thwrem that is proved in the dm with the hmction wi =h.With
this mightfuxwction, thetheorem wys that the m o r t k d cost ofof- the i'th object
is at most 1+T(PI)-rli),where r(v)is the d t ofthe mX,a d r(i) is the d t of the
no& ofthetreethaf contains the i'th object. We lmaw that thetatat weight of the
is ELl hi = .a. Thdom, ~ (v)= lopx. Also, r(i) = log[s(i))2 log(ki). Thmehm,
tbarndmd mst of m m h g thePtb, object f at YD& 1+log(m/&). Thus, theWd
~~a t d m awmes isat most 'm+EELkillog(na/b).By the dehitim ofthe
amortiztdcost,tbisIsegralm&etoWrPnningtimesrfm~ea,plnsthetotal d t
in the tree after the awessea, minm the total d t in the tree that we &art with. Since
in any tree the credit of the node that contains the i'th object ik at .thgh ad atz,log& and at mmt
BZ Iogm. Therefore, the total running time dm is at most

1-atistimeanyx&treetheinWttotaltheIogrn,most

(h) 	 that ifw e store the objects t t ~a static binary search tree (i.e., abinary
search tree that doesnot change by a3mioperation),then nomatter inwhich
order the objects axe dored in the BST, aad no matter in which order they
are accesrd, the total d g time of the rn access operations iat least

We use induction on n bo prow that the total c& of naoperations onmy BST is at lea&
(m+zsMhi Iog(g)).The induction baais is trivial, We prove the induction step as
f o k Cansideranarbitrary BST and let r be the object that is inthe root of the h e ,
a d L asd A be the sets of objects h t ~bl.ein the I& md fight subbees, resp.ectfvely.
Also, let a i ~ ~ denote C,,,& and CERki, EIy the debition ofand r n ~ m i * .
BST, the left a d right sabtrm we MTs. Thembe, by the ladwCt;onh y p o W i (md
d d & g t b e f & that t h e ~ ~ u f ~ h l g ~ treeis me pluselawntin L i n ~ w
the m& of mmsabg it in .the I& m b) , the tad cost ofthe n m ~operations an the
elements OfLis at least

and shnhly for the right subtree. Ab,the cost ofkraccessesto the object et 9.p d s d y
t.T-,the t d c m t o f r n ~ i s a t l e a s t

Th@fmcthf (x) :=xlog(x) is cewWc, t b r e k ~ ,#(P(*) +f (%l) 4- f (4)2 f (9 1
1-axiscostabovetheThus,0,3y,as,every

This compiel;es the proofd the Muation step.

