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18.415/6.854 Advanced Algorithms 

Problem Set Solution 4 
Lecturer: Michel X.  Goemans 

1. In class, we have seen Klein's cycle cancelling algorithm for the Min Cost Circu- 
lation Problem (MCCP). This algorithm requires O(mCU) iterations in the worst 
case, i.e., its running time is not polynomial in m, log C and log U. In this problem, 
we will see how to apply the idea of cost scaling on this algorithm to obtain an 
algorithm whose running time is polynomial in m, log C,  and U .  

(In fact, it is possible to apply the same idea on both costs and capacities to obtain 
an algorithm whose running time is polynomial in m, logU and log C, but this is 
not required in this problem.) 

Recall that in MCCP, a bidirected graph G = (V,E), an anti-symmetric cost 
function c : E I+ Z,and a capacity function u : E I-+ Z are given. Let n and 
m denote the number of vertices and edges in G, U = max( , ,w)E~Iu(u7w)I, and 
GI = ~ ~ ( v , w ) E EIc(u, w)I- 

(a) For every integer i, define the cost function c(" : E EZ as follows: 

c(') (u, W) :=sgn(c(u,w))LIc';~w)I] ,-

where sgn(x) is the sign of x. Notice that by the above definition, (u, w) = 
c(u, w) and ~ ( ~ ~ ~ g ( ~ + ' ) l ) ( u ,w) = 0. Our objective is to find a way to solve MCCP 
for the cost function di),given its solution for di+'). 
Let f be an optimum circulation for G with the cost function c(~+')and the 
capacity function u. Prove that if we apply Klein's cycle cancelling algorithm 
on G with the cost function di) and capacity function u, starting from the 
circulation f ,  then the number of iterations of this algorithm is O(mU). 

Since f is an optimum circulation for G with the cost function c(~+'),by the theorem 
that was proved in the class, there must be a potential function p, such that for every 
edge (u, w) in the residual graph Gt , cFf ') (u, w) = c(*') (u, w) + p(u) -p(w) 2 0. By 
the definition of di),for every edge (u, w ) , c ( ~ )(u, w ) is equal to 2c(*') (u, w ) plus one of 
the numbers -1, 0, or 1. Therefore, for every edge (u, w) in Ef , 

c g  (u, w) = c("(u, w) - 2c("') (72, w) + 2 (c("f)(v, W) + p(u) - P(W)) 2 -1. 

We know that for every cycle (flow, resp.), the cost of the cycle (flow, resp.) is the same 
with respect to  di)and cyi. Therefore, if we replace the cost function di)with the cost 

function cy:, Klein's cycle cancelling algorithm works in exactly the same way that it 
works with c(9, and outputs the same result. Therefore, we consider the cost function 
c!: instead of c(9. Let f * be the optimal circulation for c;; and consider the circulation 
f' := f * - f .  By the definition of the residual graph, f '  is a circulation in Ef . Therefore, 
the cost of f '  is at  least 



where the last inequality is a consequence of (1) and the fact that I f '  (u, w) 1 5 2U for every 
edge (u, w). Now, notice that the cost of f '  is equal to the cost of f * minus the cost of 
f . Therefore, the cost of f * is at most 2mU units less than the cost of f . This, together 
with the fact that in every iteration of Klein's algorithm the cost of the circulation is 
decreased by at least 1, implies that the number of iterations of Klein's algorithm is at 
most 2mU. 

(b) 	Use part (a) to obtain an algorithm for MCCP that requires O(mU1ogC) 
iterations. 

Start with the cost function ~ ( ~ ' * g ( ~ + ~ ) 1 )(v, w). For this function, the any feasible circula- 
tion is an optimal circulation. Run the algorithm in part (a) for i = rlog(C+1)l- 1,.. . ,0 ,  
to compute the optimal circulation with respect to the cost function di)for every i ,  and 
in particular the optimal circulation with respect to do)= c. By part (a), every step takes 
at most O(mU) iterations, and therefore the total number of iterations is O(mU log C). 

2. 	Consider a directed graph G = (V, E )  with a length function 1:E +Zand a specified 
source vertex s E V. The Bellman-Ford shortest path algorithm computes the 
shortest path lengths d(v) between s and every vertex u E V, assuming that G has 
no directed cycle of negative length (otherwise the problem is NP-hard). Here is 
a description of this algorithm: 

The Bellman-Ford algorithm computes d(u) by computing dk(v) = the shortest 
walk1 between s and u using exactly k edges. dx(u) can be computed by the 
recurrence 

dk (u) = min [dk-1(w) +1(w, u)] . 
( w 7 u ) E E  

Let hl (u) = min dk (u). It can be shown that if the graph has no negative cycle 
k=17...71 

then hn-1 (v) = d(v) for all u E V. Moreover, the graph has no negative cycle iff, for 
all u, dn(u) > hn-1(u). 

(You are not required to prove any of the above facts.) 

(a) Let p* be the minimum average length of a directed cycle C of G, i.e., 

min p(C) = min x ( u 7 V )EC ( ~ 7 

directed cycles c c ICI 

Using the Bellman-Ford algorithm, show how to compute p* in O(nm) time. 
(Hint: Use the fact that if we decrease the length of each edge by p the 
average length of any cycle decreases by p.) 

Notice that if we decrease the length of each edge in the graph by p, the mean length of 
each cycle in the graph is decreased by p. Therefore, p* is the largest value of p such 
that if we decrease the length of each edge by p, there will be no negative length cycle 
in the graph. Also, by the definition of dl (v), if one decreases the length of each edge by 
p, the effect on dl(v) is simply that it will be decreased by lp. Therefore, by the above 
facts about the Bellman-Ford algorithm, p* is the largest value of p for which all the 
inequalities 

d, (v) - n p  2 min (dk (u) - kp)
k=17...7n-l 

'A walk is like a path except that vertices might be repeated. 



hold for every u E V. Let's compute the largest value of p that satisfies the above 
inequality for a fixed u. This value is equal to the maximum over k of the largest value 
of p that satisfies the inequality d,(u) - n p  2 dk(u)- kp. Therefore, for a fixed u, the 

d, 	 v -dk(v)largest p that satisfies inequality (2) is maxx,l,...,,-l ( L, . Thus, the largest p 
that satisfies inequality (2) for every vertex u E V is equal to 

p* = min max dn (u) - dk (v) 
VEV k=l,...,n-1 n - k 

It is obvious that given all the values dl (u) that are computed by the Bellman-Ford 
algorithm, the above value can be computed in O(n2). 

(b) 	Can you find the cycle C with p(G) = p* using only O(n2) additional time? 
(In other words, suppose you are given all the values that the Bellman-Ford 
algorithm computes. Can you find a minimum mean cost cycle using this 
informat ion in 0(n2)?) 

We use the following algorithm: 

1. Compute the value of p* using the algorithm in part (a). 
2. Subtract p* from the length of each edge. 	 From now on, when we talk about the 

length of an edge, we mean the updated length. 
3. For every Z = 0, . ..,n and every vertex u E V, compute the following values: 

di (u) := dl (u) -Zp* 

hk (u) := min di(v)
k=l,...,n-1 

4. 	Find a vertex u such that h; (u) = d;(u). 
5. 	Let VO, ul,u2, . . . un be a sequence of vertices defined as follows: 


- uo = u. 

- For k = 0, .  . . ,n - 1,vk+l is a vertex for which we have 


6. 	Find i and j (i < j )  such that u; = uj. 
7. 	 Output the cycle C :=U j ,  ~ j -1 ,. ..,U i + l ,  U i  = vj. 

We prove that the above algorithm finds the minimum mean length cycle. After step 2, 
we know that a cycle of total length zero must exist in the resulting graph (and this cycle 
corresponds to a cycle with the minimum mean length in the original graph). Therefore, 
we only need to find such a cycle. Also, we know that there is no negative length cycle 
in the graph. 
After step 3, by the argument in part (a), we know that df (u) is the length of the shortest 
walk with exactly Z edges from s to u, and hd(u) is the length of the shortest walk with 
at most n edges from s to v. 
In step 4, such a vertex u must exist, since otherwise we would have hL(v) < d;(u) for 
every vertex u, and therefore we can find a small positive E: such that if we subtract r: from 
the length of each edge, all the inequalities h',(v) _< db(u) are still satisfied. Therefore, 
subtracting 6 from the length of each edge does not create any negative length cycle. This 
is in contradiction with the fact that there is a zero length cycle in the graph. 
The sequence uo, vl, u2,. ..u, defined in step 5 is well-defined, because by the definition 
of di(u) we know that for every u and k, there must be a vertex w such that dk(u) = 



da-~(w)+t(w,v) ,  A b ,  noticethat bymmmhg Equstim c3) fork = O,...ln- l3we 
obtain &(u) = + f(P)$ . t l y ~ l g .~ [ Q I * )  whete I C P )  is the fen@h ofthe walk P :=v,%-i.. 
~ r e I ~ c e ~ ( w )b O i f w  =aaaLdinffaityif w #s, and$[v) b MinfmiQ 
(Mais iP of the a&ampticmthat the graph is sbmngly ama&d), khe equality 
&(v) =$(vn) +i (P) implies that w,, = a and P isa walk fm& a to pr d length &(v). 
h~&m~dynuertice;gin&e~pb,thmm~be~andj(f
c j)ap&thatry=y. 
C d d m  dl the' -ties $-a(~h) =dn-[k+l)(~k+~) &t h = i,A. . * j  - 1,-I-l ( ~ ~ + ~ ~ * ~ )  
By dcbg all these w d i t i w  b+, we get &-d(va) =d,j(v3) +I(C), where qC) is 
* I & d e b e q d e C ~ t i s o u t p u t b y t b & m ~ h .  We&hthatI(C) =0. 
Suppose Wclaimiclnottru~.ThawemusthaveZ(C) rO(Remember:tbert~isno 
negative hgkhqdeinthegraph). T h e m h ,  %v-I ...vf+lvj*i-~t~a...vo b a *  
t b a t w l m ~ n ~ a a d i t s I @ i s & ( v ) - I ( C )  <&(u>. ThbiaacoW&etion 
with tbassumption &(v) =&(v]. 
Th+ret the above algorithm hds the minknm messn length cycle m r e d p ,  It L 
dm obpigm from the decription of the algorithm that the rnnntng time of the &me 
d g d t h m  b Q(n=). 

3, Suppaee we haven objer:bthat we waaf toatoremadab s h c t n x e ,  After storiag 
the objects in tbe data dru&ure, we wbdd like to perform m find opdiom 
on $be data e&u&uxe. Asame that the f'th object is ameaad ki 4 1 Eim~ra. 
T h d o ~ ,EL,& =m. Wewant toeva2-e thep&mmamce ofthadata s t ~ p c e  
by mmputbg the tow m d n g t k of these rn &ldqueries (noother operation, 
~uchas delete or insert, L performed on thedata atrnetms). 
(a) Show that if we Hope the object&in a splay tree, then no matter whaf the 

%id configuration of the isph tree is, a d  no matter hwhich order we 
the objckbrs, the total  mmdqg t i i  of &he m amee opera ti^ is at 

m08t 

Weme the thwrem that is proved in the dm with the hmction wi =h.With 
this mightfuxwction, thetheorem wys that the m o r t k d  cost ofof- the i'th object 
is at most 1+T(PI)-rli),where r(v)is the d t ofthe mX,a d  r(i) is the d t of the 
no& ofthetreethaf contains the i'th object. We lmaw that thetatat weight of the 
is ELl hi = .a. Thdom,  ~ ( v )= lopx. Also, r(i) = log[s(i))2 log(ki). Thmehm, 
tbarndmd mst of m m h g thePtb, object f at YD& 1+log(m/&). Thus, theWd 
~~a t  d m awmes isat most 'm+EELkillog(na/b).By the dehitim ofthe 
amortiztdcost,tbisIsegralm&etoWrPnningtimesrfm~ea,plnsthetotal d t 
in the tree after the awessea, minm the total d t in the tree that we &art with. Since 
in any tree the credit of the node that contains the i'th object ik at .thgh ad atz,log& and at mmt 
BZ Iogm. Therefore, the total running time dm is at most 

1-atistimeanyx&treetheinWttotaltheIogrn,most 



(h) 	 that ifw e  store the objects t t ~a static binary search tree (i.e., abinary 
search tree that doesnot change by a3mioperation),then nomatter inwhich 
order the objects axe dored in the BST, aad no matter in which order they 
are accesrd, the total d g time of the rn access operations iat least 

We use induction on n bo prow that the total c& of naoperations onmy BST is at lea& 
# (m+zsMhi Iog(g)).The induction baais is trivial, We prove the induction step as 
f o k  Cansideranarbitrary BST and let r be the object that is inthe root of the h e ,  
a d  L asd A be the sets of objects h t  ~bl.ein the I& md fight subbees, resp.ectfvely. 
Also, let a i ~ ~ denote C,,,& and CERki, EIy the debition ofand r n ~  m i * .  
BST, the left a d  right sabtrm we MTs. Thembe, by the ladwCt;onh y p o W i  (md 
d d & g t b e f &  that t h e ~ ~ u f ~ h l g ~  treeis me pluselawntin L i n ~ w  
the m& of mmsabg it in .the I& m b ) ,  the tad cost ofthe n m ~operations an the 
elements OfLis at least 

and shnhly for the right subtree. Ab,the cost ofkraccessesto the object et 9.p d s d y  
t.T-,the t d c m t o f r n ~ i s a t l e a s t  

Th@fmcthf (x) :=xlog(x) is cewWc, t b r e k ~ ,#(P(*) +f (%l) 4- f (4)2 f ( 9 1  
1-axiscostabovetheThus,0,3y,as,every 

This compiel;es the proofd the Muation step. 




