
MIT OpenCourseWare
http://ocw.mit.edu

6.854J / 18.415J Advanced Algorithms
Fall 2008��

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

��
 ��
�

�

18.415/6.854 Advanced Algorithms

Problem Set 5

1. In the bin packing problem,	 we are given n items, item i being of length ai

(0 < ai ≤ 1), and we need to find the minimum number of bins of length 1
so that no bin contains items whose total length exceeds 1. This problem is
NP-hard. Consider the following heuristic, called “First Fit” (FF): Consider
the items in any order and place each item into the first bin that still has room
for it. Let L∗ denote the minimum number of bins needed and let LFF be the
number of bins obtained by using First Fit.

(a) Show that LFF ≤ 2L∗ − 1 for any instance.

(b) Show that LFF ≤ αL∗ + β for some α < 2. The best possible answer is
α = 1.7 and β = 2, but this is somewhat tricky to show (or supposedly
tricky: you might have an easy argument).

Hint to get α = 1.75 in case you don’t have any other idea. Consider
three types of bins in the packing obtained by FF. B1 consists of the bins
containing items of total length greater than 2/3, B2 consists of the bins
not in B1 containing one item of length greater than 0.5 (and possibly other
items) and B3 consists of the remaining bins. Show first that |B3| ≤ 2.

2. Consider the following problem.	 Given a collection F of subsets of {1, . . . , n}
and an integer k, find k sets S1, . . . , Sk in F such that |S1 ∪ S2 ∪ . . . ∪ Sk| is
maximum. This problem is NP-hard. The greedy algorithm first chooses S1 to
be the largest set, and then having constructed S1, . . . , Si−1 chooses Si to be
the set that maximizes

i−1Si \ ∪ Sjj=1

Show that the greedy algorithm is a 1 − 1 −

.
 �k1 -approximation algorithm.
k

(Hint: You may want to show that, for any j, the union of the first j sets given
by the greedy algorithm have a cardinality at least �j

1
1 − 1 −

k
OPT,

where OPT denotes the maximum cardinality of the union of k sets.)

3. In MAX 2SAT, we are given a collection C1, . . . , Ck of boolean clauses with at
most two literals per clause. Each clause is thus either a literal or the disjunction
of two literals drawn from a set of variables {x1, x2, . . . , xn}. A literal is either

PS5-1

�

�

a variable x or its negation x̄. The goal is to find an assignment of truth values
to the variables x1, . . . , xn that maximizes the number of satisfied clauses.

(a) Show that the algorithm which independently sets every	xi to true with
probability 0.5 is a randomized 0.5-approximation algorithm. (As usual,
compute the expected number of satisfied clauses.)

(b) Consider the following linear program:

k

Max zj

j=1

subject to: � �
(LP) yi + (1 − yi) ≥ zj j = 1, . . . , k

i∈I+
j i∈Ij

−

0 ≤ yi ≤ 1 1 ≤ i ≤ n

0 ≤ zj ≤ 1 j = 1, . . . , k,

where Ij
+ (resp. Ij

−) denotes the set of variables appearing unnegated (resp.
negated) in Cj . For example, the clause x3 ∨ x̄5 would give rise to the
constraint y3 + 1 − y5 ≥ zj .

i. Show that the optimum value of this linear program is an upper bound
on the optimum value of MAX 2SAT.

ii. Let y∗, z∗ denote the optimum solution of this linear program. Show
that the algorithm which independently sets every xi to true with
probability yi

∗ is a randomized 0.75-approximation algorithm.

(c) Consider now an approach similar to the one described in class for MAX
CUT. Define a unit vector v0 corresponding to “true” and also a unit
vector vi for each variable xi. Define the “value” of the clause or literal xi

vi	 vias v(xi) = 1+v
2
0· and the value of x̄i as v(x̄i) = 1−v

2
0· . Observe that v(xi)

is 1 if v0 = vi, 0 if v0 = −vi, and between 0 and 1 otherwise. For a clause
with two literals, say C = x1∨x2, define v(C) as (3+v0·v1+v0·v2−v1 ·v2)/4.
The value of other clauses with two literals are similarly defined. Consider
now the nonlinear program:

k

Maximize v(Cj)
j=1

(NLP) subject to:

vi ∈ Sn i = 0, 1 . . . , n.

i. Show that the optimum value of this nonlinear program is an upper
bound on the optimum value of MAX 2SAT.

PS5-2

ii. Consider the algorithm which first solves this nonlinear program opti­
mally, then generates a uniformly selected point r on the unit sphere
Sn, and sets xi to be true if (v0 · r)(vi · r) ≥ 0. Using the analysis of
the MAX CUT algorithm seen in class, show that this algorithm is a
randomized 0.878-approximation algorithm for MAX 2SAT.

(d) Can you do better than 0.878?

PS5-3

