MIT OpenCourseWare http://ocw.mit.edu

6.854J / 18.415J Advanced Algorithms Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.415/6.854 Advanced Algorithms

Problem Set 5

- 1. In the bin packing problem, we are given n items, item i being of length a_i ($0 < a_i \le 1$), and we need to find the minimum number of bins of length 1 so that no bin contains items whose total length exceeds 1. This problem is NP-hard. Consider the following heuristic, called "First Fit" (FF): Consider the items in any order and place each item into the first bin that still has room for it. Let L^* denote the minimum number of bins needed and let L_{FF} be the number of bins obtained by using First Fit.
 - (a) Show that $L_{FF} \leq 2L^* 1$ for any instance.
 - (b) Show that $L_{FF} \leq \alpha L^* + \beta$ for some $\alpha < 2$. The best possible answer is $\alpha = 1.7$ and $\beta = 2$, but this is somewhat tricky to show (or *supposedly* tricky: you might have an easy argument).

Hint to get $\alpha = 1.75$ in case you don't have any other idea. Consider three types of bins in the packing obtained by FF. B_1 consists of the bins containing items of total length greater than 2/3, B_2 consists of the bins not in B_1 containing one item of length greater than 0.5 (and possibly other items) and B_3 consists of the remaining bins. Show first that $|B_3| \leq 2$.

2. Consider the following problem. Given a collection \mathcal{F} of subsets of $\{1, \ldots, n\}$ and an integer k, find k sets S_1, \ldots, S_k in \mathcal{F} such that $|S_1 \cup S_2 \cup \ldots \cup S_k|$ is maximum. This problem is NP-hard. The greedy algorithm first chooses S_1 to be the largest set, and then having constructed S_1, \ldots, S_{i-1} chooses S_i to be the set that maximizes

$$\left|S_i\setminus \cup_{j=1}^{i-1}S_j\right|$$
.

Show that the greedy algorithm is a $1 - \left(1 - \frac{1}{k}\right)^k$ -approximation algorithm.

(Hint: You may want to show that, for any j, the union of the first j sets given by the greedy algorithm have a cardinality at least

$$1 - \left(1 - \frac{1}{k}\right)^j OPT,$$

where OPT denotes the maximum cardinality of the union of k sets.)

3. In MAX 2SAT, we are given a collection C_1, \ldots, C_k of boolean clauses with at most two literals per clause. Each clause is thus either a literal or the disjunction of two literals drawn from a set of variables $\{x_1, x_2, \ldots, x_n\}$. A *literal* is either

a variable x or its negation \bar{x} . The goal is to find an assignment of truth values to the variables x_1, \ldots, x_n that maximizes the number of satisfied clauses.

- (a) Show that the algorithm which independently sets every x_i to true with probability 0.5 is a randomized 0.5-approximation algorithm. (As usual, compute the expected number of satisfied clauses.)
- (b) Consider the following linear program:

$$\max \sum_{j=1}^{k} z_{j}$$
subject to:
$$(LP)$$

$$\sum_{i \in I_{j}^{+}} y_{i} + \sum_{i \in I_{j}^{-}} (1 - y_{i}) \geq z_{j} \qquad j = 1, \dots, k$$

$$0 \leq y_{i} \leq 1 \qquad 1 \leq i \leq n$$

$$0 \leq z_{i} \leq 1 \qquad j = 1, \dots, k.$$

where I_j^+ (resp. I_j^-) denotes the set of variables appearing unnegated (resp. negated) in C_j . For example, the clause $x_3 \vee \bar{x}_5$ would give rise to the constraint $y_3 + 1 - y_5 \geq z_j$.

- i. Show that the optimum value of this linear program is an upper bound on the optimum value of MAX 2SAT.
- ii. Let y^*, z^* denote the optimum solution of this linear program. Show that the algorithm which independently sets every x_i to true with probability y_i^* is a randomized 0.75-approximation algorithm.
- (c) Consider now an approach similar to the one described in class for MAX CUT. Define a unit vector v_0 corresponding to "true" and also a unit vector v_i for each variable x_i . Define the "value" of the clause or literal x_i as $v(x_i) = \frac{1+v_0 \cdot v_i}{2}$ and the value of \bar{x}_i as $v(\bar{x}_i) = \frac{1-v_0 \cdot v_i}{2}$. Observe that $v(x_i)$ is 1 if $v_0 = v_i$, 0 if $v_0 = -v_i$, and between 0 and 1 otherwise. For a clause with two literals, say $C = x_1 \vee x_2$, define v(C) as $(3+v_0 \cdot v_1 + v_0 \cdot v_2 v_1 \cdot v_2)/4$. The value of other clauses with two literals are similarly defined. Consider now the nonlinear program:

Maximize
$$\sum_{j=1}^k v(C_j)$$

$$(NLP) \qquad \text{subject to:}$$

$$v_i \in S_n \qquad \qquad i=0,1\dots,n.$$

i. Show that the optimum value of this nonlinear program is an upper bound on the optimum value of MAX 2SAT.

- ii. Consider the algorithm which first solves this nonlinear program optimally, then generates a uniformly selected point r on the unit sphere S_n , and sets x_i to be true if $(v_0 \cdot r)(v_i \cdot r) \geq 0$. Using the analysis of the MAX CUT algorithm seen in class, show that this algorithm is a randomized 0.878-approximation algorithm for MAX 2SAT.
- (d) Can you do better than 0.878?