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18.415/6.854 Advanced Algorithms 

Problem Set 5 

1. In the bin packing problem,	 we are given n items, item i being of length ai 

(0 < ai ≤ 1), and we need to find the minimum number of bins of length 1 
so that no bin contains items whose total length exceeds 1. This problem is 
NP-hard. Consider the following heuristic, called “First Fit” (FF): Consider 
the items in any order and place each item into the first bin that still has room 
for it. Let L∗ denote the minimum number of bins needed and let LFF be the 
number of bins obtained by using First Fit. 

(a) Show that LFF ≤ 2L∗ − 1 for any instance. 

(b) Show that LFF ≤ αL∗ + β for some α < 2. The best possible answer is 
α = 1.7 and β = 2, but this is somewhat tricky to show (or supposedly 
tricky: you might have an easy argument). 

Hint to get α = 1.75 in case you don’t have any other idea. Consider 
three types of bins in the packing obtained by FF. B1 consists of the bins 
containing items of total length greater than 2/3, B2 consists of the bins 
not in B1 containing one item of length greater than 0.5 (and possibly other 
items) and B3 consists of the remaining bins. Show first that |B3| ≤ 2. 

2. Consider the following problem.	 Given a collection F of subsets of {1, . . . , n}
and an integer k, find k sets S1, . . . , Sk in F such that |S1 ∪ S2 ∪ . . . ∪ Sk| is 
maximum. This problem is NP-hard. The greedy algorithm first chooses S1 to 
be the largest set, and then having constructed S1, . . . , Si−1 chooses Si to be 
the set that maximizes


i−1Si \ ∪ Sjj=1

Show that the greedy algorithm is a 1 − 1 − 

.
 �k1 -approximation algorithm. 
k 

(Hint: You may want to show that, for any j, the union of the first j sets given 
by the greedy algorithm have a cardinality at least �j

1 
1 − 1 − 

k 
OPT,


where OPT denotes the maximum cardinality of the union of k sets.)


3. In MAX 2SAT, we are given a collection C1, . . . , Ck of boolean clauses with at 
most two literals per clause. Each clause is thus either a literal or the disjunction 
of two literals drawn from a set of variables {x1, x2, . . . , xn}. A literal is either 
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a variable x or its negation x̄. The goal is to find an assignment of truth values 
to the variables x1, . . . , xn that maximizes the number of satisfied clauses. 

(a) Show that the algorithm which independently sets every	xi to true with 
probability 0.5 is a randomized 0.5-approximation algorithm. (As usual, 
compute the expected number of satisfied clauses.) 

(b) Consider the following linear program: 

k

Max zj 

j=1 

subject to: � � 
(LP ) yi + (1 − yi) ≥ zj j = 1, . . . , k 

i∈I+ 
j i∈Ij

− 

0 ≤ yi ≤ 1 1 ≤ i ≤ n 

0 ≤ zj ≤ 1 j = 1, . . . , k, 

where Ij 
+ (resp. Ij

−) denotes the set of variables appearing unnegated (resp. 
negated) in Cj . For example, the clause x3 ∨ x̄5 would give rise to the 
constraint y3 + 1 − y5 ≥ zj . 

i. Show that the optimum value of this linear program is an upper bound 
on the optimum value of MAX 2SAT. 

ii. Let y∗, z∗ denote the optimum solution of this linear program. Show 
that the algorithm which independently sets every xi to true with 
probability yi 

∗ is a randomized 0.75-approximation algorithm. 

(c) Consider now an approach similar to the one described in class for MAX 
CUT. Define a unit vector v0 corresponding to “true” and also a unit 
vector vi for each variable xi. Define the “value” of the clause or literal xi 

vi	 vias v(xi) = 1+v
2 
0· and the value of x̄i as v(x̄i) = 1−v

2 
0· . Observe that v(xi) 

is 1 if v0 = vi, 0 if v0 = −vi, and between 0 and 1 otherwise. For a clause 
with two literals, say C = x1∨x2, define v(C) as (3+v0·v1+v0·v2−v1 ·v2)/4. 
The value of other clauses with two literals are similarly defined. Consider 
now the nonlinear program: 

k

Maximize v(Cj ) 
j=1 

(NLP ) subject to: 

vi ∈ Sn i = 0, 1 . . . , n. 

i. Show that the optimum value of this nonlinear program is an upper 
bound on the optimum value of MAX 2SAT. 
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ii. Consider the algorithm which first solves this nonlinear program opti­
mally, then generates a uniformly selected point r on the unit sphere 
Sn, and sets xi to be true if (v0 · r)(vi · r) ≥ 0. Using the analysis of 
the MAX CUT algorithm seen in class, show that this algorithm is a 
randomized 0.878-approximation algorithm for MAX 2SAT. 

(d) Can you do better than 0.878? 
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