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18.415/6.854 Advanced Algorithms 

Problem Set 4 

Problem 1. In a 0-sum 2-player game, Alice has a choice of n so-called pure strate­
gies and Bob has a choice of m pure strategies. If Alice picks strategy i and Bob picks 
strategy j, then the payoff is aij , meaning aij dollars are transfered from Alice to 
Bob. So Bob makes money if aij is positive, but Alice makes money if aij is negative. 
Thus, Alice wants to pick a strategy that minimizes the payoff while Bob wants a 
strategy that maximizes the payoff. The matrix A = (aij ) is called the payoff matrix. 

It is well known that to play these games well, you need to use a mixed strategy— 
a random choice from among pure strategies. A mixed strategy is just a particular 
probability distribution over pure strategies: you flip coins and then play the selected 
pure strategy. If Alice has mixed strategy x, meaning he plays strategy i with prob­
ability xi, and Bob has mixed strategy y, then it is easy to prove that the expected 
payoff in the resulting game is xT Ay. Alice wants to minimize this expected payoff 
while Bob wants to maximize it. Our goal is to understand what strategies each 
player should play. 

We’ll start by making the pessimal assumption for Alice that whichever strategy 
she picks, Bob will play best possible strategy against her. In other words, given 
Alice’s strategy x, Bob will pick a strategy y that achieves maxy x

T Ay. Thus, Alice 
wants to find a distribution x that minimizes maxy x

T Ay. Similarly, Bob wants a y 
to maximize minx x

T Ay. So we are interested in solving the following 2 problems: 

P min Pmax x T Ay 
x: xi=1,x≥0 y: yj =1,y≥0 

Pmax P min x T Ay 
y: yj =1,y≥0 x: xi=1,x≥0 

Unfortunately, these look like nonlinear programs! 

1. Show that if Alice’s mixed strategy is known, then Bob has a pure strategy 
serving as his best response. 

2. Show how to convert each program above into a linear program, and thus find 
an optimal strategy for both players in polynomial time. 

3. Use strong duality (applied to the LP you built in the previous part) to argue 
that the above two quantities are equal. 
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The second statement shows that the strategies x and y, besides being optimal, are 
in Nash Equilibrium: even if each player knows the other’s strategy, there is no point 
in changing strategies. This was proven by Von Neumann and was actually one of 
the ideas that led to the discovery of strong duality. 

Problem 2. Consider the linear program 

min xj 

j 

subject to	 � 
aij xj ≥ 1 ∀i 

j 

xj ≥ 0 ∀j 

and its dual � 
max yi 

i 

subject to	 � 
aijyi ≤ 1 

i 

xi ≥ 0. 

Assume that A = [aij ] is m × n and has only nonnegative entries. 
In this problem, you’ll have to show that a continuous algorithm solves (almost 

miraculously) the above pair of dual linear programs. We shall define a series of 
functions whose argument is the “time” and you’ll show that some of these functions 
tend to the optimal solution as time goes to infinity. (For simplicity of notation, we 
drop the dependence on the time.) 

•	 Initially, we let sj = 0 for j = 1, . . . , n and LB = 0. The vector s will (sort 
of) play the role of primal solution, and LB the role of a lower bound on the 
objective function. 

•	 At any time, let P 
ti = e− j aij sj 

for i = 1, . . . ,m. Also, let dj = i aij ti for j = 1, . . . , n, D = maxj dj and k 
be an index j attaining the maximum in the definition of D. The algorithm 
continuously increases sk. 

Observe that when sk is increased, the vectors t and d as well as D change also, 
implying that the index k changes over time. 
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1. Let α = mini( j aij sj ). Let xj = sj /α for j = 1, . . . , n, yi = ti/D for i = P 

1, . . . ,m and LB = max(LB, 
D

ti ). Show that x is primal feasible, y is dual 
feasible and LB is a lower bound on the optimal value of both primal and dual. 

2. Prove that 
m� P n 

ti ≤ me− j=1 sj /LB . 
i=1 

Hint: Show that initially the inequality holds and that it is also maintained 
whenever we have equality. 

3. Deduce from (b) that i ti tends to 0 as time goes to infinity. 

4. Using (b),	 give an upper bound on the value of the primal solution x, and 
using (c), show that this upper bound tends to LB as time goes to infinity. 
This shows that as time goes to infinity, both x and y tend to primal and dual 
optimal solutions! 

Problem 3. We would like to find a function f(n) such that, given any set of 
n (possibly negative) numbers, c1, , cn, one cannot find more than f(n) subsums · · · 
of these numbers which decrease in absolute value by a factor of at least 2. More 
formally: 

Lemma 1 Let c ∈ Rn and yk ∈ {0, 1}n for k = 1, . . . , q such that 2|yT | ≤ |yk
T c|k+1c

for k = 1, . . . , q − 1. Assume that yT c = 1. Then q ≤ f(n).q 

Using linear programming, you are asked to prove that f(n) = O(n log n). 

1. Given a vector c and a set of q subsums satisfying the hypothesis of the Lemma, 
write a set of inequalities in the variables xi ≥ 0, i = 1 . . . n, such that xi = |ci|
is a feasible vector, and for any feasible vector x� there is a corresponding vector 
c� satisfying the hypothesis of the Lemma for the same set of subsums. 

2. Prove that there must exist a vector c� satisfying the hypothesis of the Lemma, 
with c� of the form (d1/d, d2/d, . . . , dn/d) for some integers d , d1 , . . . , dn = 
2O(n log n) . 

| | | | | | 

3. Deduce that f(n) = O(n log n). 

4. (Not part	 of the problem set; only for those who find the problem sets too 
easy...) Show that f(n) = Ω(n log n) (as a tiny step, can you find a set of 
numbers such that f(n) > n?). 
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Problem 4. Let K be a bounded convex set in Rn . In this problem, you’ll prove 
that there exists an ellipsoid E contained within K such that if you blow it up by 
a factor of n (the dimension) then the corresponding ellipoid contains K; in short, 
E ⊆ K and K ⊆ nE. 

1. Suppose that we have an ellipsoid E(a, A) = {x ∈ Rn : (x − a)T A−1(x − a) ≤ 1}
and we have a point b /∈ nE(a, A). Argue that the convex hull of b and E(a, A), 
conv({b}, E(a, A)), contains an ellipsoid E� of larger volume than E(a, A). 

(You do not need to explicitly give a� and A� corresponding to E � = E(a�, A�), 
if that helps. It might be easier to deal with a particular case for a, A and b, 
and argue why you can.) 

2. Argue	 that the maximum volume ellipsoid E contained in K (it is actually 
unique, although you do not need this) is such that nE ⊇ K. 

3. (Optional. Assume that K = {x ∈ Rn : Cx ≤ d} is bounded, where C is m × n 
and d ∈ Rm . Formulate the problem of finding the largest volume ellipsoid 
contained within K as a convex program (minimizing a convex function over 
a convex set, or maximizing a concave function over a convex set. One could 
therefore use the ellipsoid algorithm to find (a close approximation to) this 
maximum volume ellipsoid.) 

Problem 6. Given an undirected graph G = (V, E), a set T ⊆ V with |T | even 
and a weight function w : E Q+, the minimum (weight) T -cut problem is to find 
S ⊆ with |S ∩ T | odd1 such that d(S) := w(S : S̄) := e∈(S:S̄) we is minimized. 

→	 � 

¯Here (S : S) denotes the set of edges of E with exactly one endpoint in S (since our 
graph is undirected, observe that d(S) = d(S̄)). For T = {s, t}, the minimum T -cut 
problem reduces to the minimum s − t cut problem (in an undirected graph). In this 
problem, you will show that the minimum T -cut problem can be solved efficiently. 

1. Argue that the minimum	 s − t cut problem in an undirected graph G can be 
solved efficiently by using an algorithm for a minimum s − t cut problem in a 
directed graph H. 

¯	 ¯2. A T − T cut is a cut (S : S) with S ∩ T �= ∅ and S ∩ T �= ∅. Show that the 
minimum weight T − T cut can be obtained by solving a polynomial number of 
minimum s − t cut problems. Can you do it with O(|T |) such minimum s − t 
cut computations? 

3. Prove that for any A, B ⊆ V , we have 

d(A) + d(B) ≥ d(A ∩ B) + d(A ∪ B). 

1thus, S ̄ ∩ T | = |T \ S| is also odd. 

PS4-4 



4. To	 solve the minimum T -cut problem, suppose we first solve the minimum 
¯T − T cut problem and obtain the cut (S : S). If |S ∩ T | is odd, we are done 

(right?). If |S ∩ T | is even, use the previous inequality to argue that there exists 
¯ ¯a minimum T -cut (C : C) such that C ⊆ S or C ⊆ S. Deduce from this an 

efficient algorithm for solving the minimum T -cut problem. How many calls to 
your minimum T − T cut algorithm are you using? 
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