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18.415/6.854 Advanced Algorithms 

Problem Set 2 

If you have any doubt about the collaboration policy, please check the 
course webpage. 

Problems: 

1. Given a directed graph G = (V, E), a source s ∈ V , a sink t ∈ V and a length 
function l : E → R, the fattest path problem is to find a simple path P from s 
to t which maximizes min(v,w)∈P l(v, w). 

(a) Give a modification of Dijkstra’s algorithm for the shortest path problem 
which solves the fattest path problem. Argue correctness of your algorithm. 

(b) Suppose that all arcs lengths are integer-valued between 1 and m where 
m = |E|. Can you provide an implementation of your algorithm that runs 
in O(m) time? (Hint: Do not use any fancy priority queue.) 

2. In this problem, you will show that the fattest augmenting path algorithm for 
the maximum flow problem can be implemented to run in O(m) time per itera­
tion after some basic preprocessing. Remember that in the fattest augmenting 
path algorithm, the augmenting path with largest minimum residual capacity 
is chosen at every iteration. 

(a) Show that if we have a total ordering of the residual capacities then the 
fattest augmenting path can be found in O(m) time. 

(b) Show that, this total ordering of the residual capacities can be maintained 
in O(m) time after pushing flow along one augmenting path (how do the 
residual capacities change)? 

(c) What is the running time ofthe resulting inplementation of the fattest 
augmenting path algorithm? 

3. Consider a directed graph G = (V, E) with a length function l : E → Z and 
a specified source vertex s ∈ V . The Bellman-Ford shortest path algorithm 
computes the shortest path lengths d(v) between s and every vertex v ∈ V , 
assuming that G has no directed cycle of negative length (otherwise the problem 
is NP-hard). Here is a description of this algorithm: 

The Bellman-Ford algorithm computes d(v) by computing dk(v) = the shortest 
walk1 between s and v using exactly k edges. dk(v) can be computed by the 

1A walk is like a path except that vertices might be repeated. 
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recurrence 
dk(v) = min [dk−1(w) + l(w, v)] . 

(w,v)∈E 

Let hl(v) = min dk(v). It can be shown that if the graph has no negative cycle 
k=1,...,l 

then hn−1(v) = d(v) for all v ∈ V . Moreover, the graph has no negative cycle

iff, for all v, dn(v) ≥ hn−1(v).


(You are not required to prove any of the above facts.)


(a) Let µ ∗ be the minimum average length of a directed cycle C of G, i.e., 

l(u, v) 
µ ∗(G) = min µ(C) = min 

(u,v)∈C 
. 

directed cycles C C |C| 

Using the Bellman-Ford algorithm, show how to compute µ ∗ in O(nm) 
time.


(Hint: Use the fact that if we decrease the length of each edge by µ the

average length of any cycle decreases by µ.)


∗(b) Can you find the cycle C with µ(C) = µ using only O(n2) additional time? 
(In other words, suppose you are given all the values that the Bellman-
Ford algorithm computes. Can you find a minimum mean cost cycle using 
this information in O(n2)?) 

4. In this problem, we will propose another way to solve the minimum mean cost 
cycle problem. The resulting algorithm will be quite slow, but the technique 
is widely applicable (and for other problems, this will give the fastest known 
approach). The problem of finding µ ∗ is equivalent to the problem of finding 
the largest value of µ such that the graph with lengths lµ(u, v) = l(u, v)−µ has 
no negative cycles. 

(a) Argue that for a given value of µ, we can decide whether µ ∗ ≥ µ or 
µ ∗ < µ by performing at most O(A(m, n)) additions of 2 numbers and 
O(C(m, n)) comparisons involving 2 numbers (and no other operations 
except control statements). Please state the values you can obtain for 
A(m, n) and C(m, n). Observe that, as we are performing only additions 
and comparisons, all the numbers involved are linear functions of the input 
lengths and µ. 

(b) Now suppose we run the above algorithm with µ equal to the unknown 
value µ ∗ . We can easily perform the additions provided that we store all 
the numbers (including the inputs) as linear functions of µ ∗ (i.e. of the 
form a + bµ∗). Explain how we can resolve the comparisons (even though 
we do not know µ ∗). (It is normal if the solution requires a fair amount of 
time to resolve each comparison.) As a function of A(m, n) and C(m, n), 
what is the total running time of your algorithm to compute µ ∗? 

PS2-2 



5. We argued in lecture that for the maximum flow problem, there always exists a 
maximum flow which is integer-valued if the capacities are integral. Prove that 
a corresponding statement for minimum cost circulations also holds, namely 
that if the capacities and the costs are integer-valued then (i) the minimum 
cost circulation can be chosen to be integer-valued and (ii) the vertex potentials 
proving optimality can also be chosen to be integer-valued. 

6. In this problem, we will add a time dimension to network flows. Suppose we 
have a network G = (V, E) in which each arc has unit capacity (u(v, w) = 1 for 
all arcs (v, w)), and we have two special vertices, a source s and a sink t. Our 
network for example could be a computer network and our unit of flow could be 
a packet. Each arc also has an integer-valued transit time τ(v, w) ∈ Z+ which 
represents the time it takes (a unit of flow or packet) to travel through the arc. 
At every unit of time, say at time d, only one packet can enter the arc (there 
might be several packets already travelling through the arc since there could 
have been packets injected in it at times d−1, d−2, etc.). We can assume that 
vertices can instantaneously accept packets on its incoming arcs and also inject 
one packet (if available) on each of its outgoing arcs (and if there are remaining 
packets, they can be queued at the vertex). 

The first problem we consider is, given a deadline D, to find the maximum 
number k(D) of packets that can enter the network at s at time 1 or later and 
leave the network at vertex t at time D or earlier. As an example, suppose that 
our graph has only 3 arcs (s, a), (a, t) and (s, t) each with a transit time of 2. 
Then, if D = 5, the answer should be k(5) = 4 packets. Indeed, we can send 3 
packets along the arc (s, t), entering at times 1, 2 and 3 and leaving at time 3, 
4 and 5 ≤ D. We can also send a 4th packet, along the path (s, a) and (a, t); 
it will enter the arc (s, a) at time 1, arrive at a at time 3 and arrive at t at 
time 5. (Observe by the way that in this example, no packet had to wait at 
intermediate vertices.) 

(a) Construct a maximum flow instance on a bigger network G ′ = (V ′ , E ′) such 
that the solution of this maximum flow instance allows you to find k(D) 
and the scheduling (when they travel through each arc) of the packets in 
the original network G. |V ′| can be of the order of D|V |. 

(b) The solution above is not polynomial when D is part of the input (since 
the size of the network grows linearly in D). To find a polynomial time 
algorithm, consider the following circulation problem. Take the original 
graph G = (V, E) with all arcs of capacity 1 and give arc (v, w) ∈ E a cost 
c(v, w) = τ(v, w). Add one arc (t, s) of infinite capacity and cost equal to 
−D. Let −C∗ be the cost of the minimum cost circulation f ∗ . Prove the 
following claim: C∗ is precisely k(D). Also explain how one can find the 
scheduling of the packets from the minimum cost circulation f ∗ . 
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(It might be helpful to first see what happens on the simple example with 
3 arcs given above.) 

(c) Now, suppose that we want to solve the converse problem. We would 
like to send k packets from s to t so that the last packet arrives at t as 
early as possible. Propose a polynomial-time algorithm which given k finds 
D(k), the minimum time at which all packets have arrived at t. What is 
the running time of your algorithm as a function of n = |V |, m = |E|, 
T = max τ(v, w) and k? 

(d) Your algorithm for (c) is probably not strongly polynomial, in the sense 
that its running time depends on log(T ) and/or log(k). Can you pro­
pose a strongly polynomial-time algorithm? Just sketch it (a few lines are 
enough); do not give all the details. (Kind of hint: this solution will be 
much slower than (c) when T and k are small.) 

(By the way, all the results above are still true if the capacities are integers 
possibly greater than 1; in such a case, at every time d, at most u(v, w) packets 
can be injected in arc (v, w). Arguing about the validity of (b) is slightly more 
difficult.) 

7. Which question did you like the most (excluded this one...)? Which question 
did you like the least? 
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