
6.854 Advanced Algorithms 

Lecture 18: 11/05/2004 Lecturer: David Karger 
Scribes: Chun­Chieh Lin 

18.1	 Lower Bounds for Competitive Ratios of Randomized 
Online Algorithms 

Designing an online algorithm can be viewed as a game between the algorithm designer and the 
adversary. The algorithm designer chooses an algorithm Ai, and the adversary chooses an input 
σj . The payoff matrix contains the cost of the algorithm on the input CAi(σj). The algorithm 
designer wants to minimize the cost, while the adversary wants to maximize the cost. A randomized 
online algorithm is a probability distribution over the deterministic algorithms, so it corresponds to 
a mixed strategy for the algorithm designer. 

18.1.1	 Game Theory Analysis 

Von Neumann proved that for any game, there exist equilibrium (mixed) strategies for the players. 
At the equilibrium, neither side is able to improve (increase or decrease depending on the player) 
the cost any further by changing the strategy. 

However, problem 4a of problem set 6 showed that if one player’s mixed strategy is known (and 
fixed), the other player has a pure strategy as a best response. That means, if one of the players 
is using the equilibrium (optimal) mixed strategy, the other player has pure strategy as a best 
response, and the resulting cost is the equilibrium cost. Again, a pure strategy for the algorithm 
designer corresponds to a deterministic algorithm, and a mixed strategy for the algorithm designer 
corresponds to a randomized algorithm, so this leads to Yao’s Minimax Principle: 

Theorem 1 Yao’s Minimax Princliple: If for some input distribution no deterministic algo­
rithm is k­competitive, then no randomized k­competitive algorithm exists. 

18.1.2	 Example: Paging 

Suppose there are k + 1 pages and n accesses, and for each access, the pages all have probability 
1/(k + 1) of being requested. In other words, this is a uniform distribution over inputs with length 
n of the k + 1 pages. 

18­1 



Lecture 18: 11/05/2004 18­2 

Online Algorithm 

No matter what the online algorithm does, there are only k pages in the memory at any point 
in time. So with probability 1/(k + 1), the requested page is not in the memory. Therefore, the 
expected number of faults over the n accesses is n/(k +1), and the expected number of requests per 
fault is k + 1, which is Θ(k). 

Offline Algorithm 

Even though the sequence of requests is still chosen at random, the offline algorithm has access to 
the whole sequence before it starts running. 

As shown in previous lectures, an optimal algorithm for the offline algorithm is the Farthest in 
Future algorithm, which evicts the page that is requested farthest in the future. This algorithm 
faults once every k+1 distinct pages seen, because after each fault, the evicted page is not requested 
again until after all other k pages are requested. 

The expected number of requests it takes to see all k +1 distinct pages can be calculated as follows: 

E[No. requests total] = Σk+1 E[No. requests between the i− 1th distinct request and the ith]i=1 

k+2−iP (each request after the i− 1th distinct request is the ith distinct request) = k+1 

k+1E[No. requests between the i− 1th distinct request and the ith] = k+2−i 

1E[No. requests total] = Σk+1 k+1 1 1 1 + 1 + ... + 1 ) = Θ(klogk)i=1 k+2−i = (k + 1) ∗ (k+1 + k + k−1 k−2 

Conclusions 

The expected number of pages per fault for the online algorithm is Θ(k). The expected number of 
pages per fault for the offline algorithm is Θ(klogk). So the ratio of fault counts is Θ(logk). 

Using Yao’s Minimax Principle, this shows that no randomized algorithm can have competitive ratio 
better than Θ(logk) for paging. 


